1
|
Djunaidi MC, Putri VR, Maharani ND, Lusiana RA, Siahaan P, Sunarno S. Precipitation Polymerization-Based Molecularly Imprinted Polymers: A Novel Approach for Transdermal Curcumin Delivery. Polymers (Basel) 2024; 16:3456. [PMID: 39771308 PMCID: PMC11678942 DOI: 10.3390/polym16243456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
This research describes the synthesis and characterization of a molecularly imprinted polymer (MIP) as a candidate for the transdermal delivery of curcumin. The MIP was synthesized through precipitation polymerization using methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking agent. MIP characterization studies were conducted using SEM-EDX and FTIR spectroscopy to determine the morphology and interaction between curcumin and polymers. The MIP obtained through precipitation polymerization was in the form of a fine powder with a surface morphology resembling a collection of small granules with a uniform shape. The adsorption capacity of the MIP follows the Langmuir adsorption isotherm model, with a maximum capacity of 4.239 mg/g, which is greater than that of the NIP (3.219 mg/g), resulting in an imprinting efficiency of 1.317. The percentage of curcumin released from the MIP after 8 h was 41.26%, which is lower than that from the NIP, at 51.50%. The drug release kinetics study follows the Higuchi model, indicating drug diffusion from the polymer matrix. Imprinting on the MIP can modify drug diffusion from the polymer matrix, resulting in a reduced release rate in the MIP. Therefore, the MIP can be considered a candidate for the controlled transdermal delivery of curcumin.
Collapse
Affiliation(s)
- Muhammad Cholid Djunaidi
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia; (V.R.P.); (N.D.M.); (R.A.L.); (P.S.)
| | - Viona Resda Putri
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia; (V.R.P.); (N.D.M.); (R.A.L.); (P.S.)
| | - Nesti Dwi Maharani
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia; (V.R.P.); (N.D.M.); (R.A.L.); (P.S.)
| | - Retno Ariadi Lusiana
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia; (V.R.P.); (N.D.M.); (R.A.L.); (P.S.)
| | - Parsaoran Siahaan
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia; (V.R.P.); (N.D.M.); (R.A.L.); (P.S.)
| | - Sunarno Sunarno
- Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia;
| |
Collapse
|
2
|
Mahmoud AM, Alqahtani YS, Al-Qarni AO, Ali R, El-Wekil MM. Molecular imprinting technology for electrochemical sensing of kasugamycin in food products based on Cu 2+/Cu + stripping current. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8194-8203. [PMID: 39485522 DOI: 10.1039/d4ay01290a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
An electrochemical sensing approach was developed for the detection of the agricultural antibiotic drug kasugamycin. The method involves the construction of an electrochemical sensor comprising molecularly imprinted polymers (MIPs) embedded within a carbon paste (CP) matrix. The MIPs are designed to have imprinted sites that match the size and geometry of the Cu(II)-kasugamycin coordinated complex. Upon removal of kasugamycin, cavities suitable for the drug's entrance are formed within the MIPs. The presence of Cu(II) facilitates the detection of the drug by generating a redox signal of Cu(II)-Cu(I), which can be easily detected using differential pulse voltammetry (DPV). The signal response of Cu(II)-Cu(I) increases in the presence of the drug, promoting the accumulation of Cu(II) ions within the imprinted cavities. Under optimized conditions, the anodic peak (Ipa) signal of Cu(II)-Cu(I) exhibits an increase proportional to the concentration of kasugamycin within the range of 0.15-140 μM. The detection limit (LOD, S/N = 3) achieved is 0.046 μM. The proposed sensor demonstrates several characteristic features including good stability, reliable performance, a low detection limit, and excellent selectivity. The Cu(II)-MIP@CP sensor proved effective in detecting kasugamycin within complex samples like meat, milk, and cucumber, yielding recovery% ranging from 96.0 to 103.8%. Additionally, the relative standard deviation % (RSD%) fell within the range of 2.2% to 4.0%, indicating good precision and reliability.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Ali O Al-Qarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Ramadan Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
3
|
Gagliani F, Di Giulio T, Asif MI, Malitesta C, Mazzotta E. Boosting Electrochemical Sensing Performances Using Molecularly Imprinted Nanoparticles. BIOSENSORS 2024; 14:358. [PMID: 39056634 PMCID: PMC11274585 DOI: 10.3390/bios14070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Nanoparticles of molecularly imprinted polymers (nanoMIPs) combine the excellent recognition ability of imprinted polymers with specific properties related to the nanosize, such as a high surface-to-volume ratio, resulting in highly performing recognition elements with surface-exposed binding sites that promote the interaction with the target and, in turn, binding kinetics. Different synthetic strategies are currently available to produce nanoMIPs, with the possibility to select specific conditions in relation to the nature of monomers/templates and, importantly, to tune the nanoparticle size. The excellent sensing properties, combined with the size, tunability, and flexibility of synthetic protocols applicable to different targets, have enabled the widespread use of nanoMIPs in several applications, including sensors, imaging, and drug delivery. The present review summarizes nanoMIPs applications in sensors, specifically focusing on electrochemical detection, for which nanoMIPs have been mostly applied. After a general survey of the most widely adopted nanoMIP synthetic approaches, the integration of imprinted nanoparticles with electrochemical transducers will be discussed, representing a key step for enabling a reliable and stable sensor response. The mechanisms for electrochemical signal generation will also be compared, followed by an illustration of nanoMIP-based electrochemical sensor employment in several application fields. The high potentialities of nanoMIP-based electrochemical sensors are presented, and possible reasons that still limit their commercialization and issues to be resolved for coupling electrochemical sensing and nanoMIPs in an increasingly widespread daily-use technology are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (F.G.); (T.D.G.); (M.I.A.); (C.M.)
| |
Collapse
|
4
|
A Z A, Alhazzani K, Alaseem AM, Alanzi AR, Al Awadh SA, Alenazi FS, Obaidullah AJ, El-Wekil MM. A molecularly imprinted electrochemical sensor for specific and ultrasensitive determination of an aminoglycoside drug: the role of copper ions in the determination. Analyst 2023; 148:2170-2179. [PMID: 37060111 DOI: 10.1039/d3an00251a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Herein, a molecularly imprinted polymer (MIP) was fabricated for specific sensing of an aminoglycoside e.g. kanamycin (KANA). Carbon paste modified with a MIP specific to Cu2+-KANA was first introduced. Copper (Cu2+) as a metal ion was used as a signal tracer and an amplifier, producing a current response measured by differential pulse voltammetry (DPV). Introducing the aminoglycoside drug into the solution containing Cu2+ did not affect the current response of the NIP/CPE. Under the optimum conditions, the as-fabricated sensor exhibited an increase in the current response in the range of 0.55-550 nM with a good limit of detection (LOD, S/N = 3) of 161 pM. The sensor exhibited many advantages including high sensitivity and selectivity, good stability and reproducibility, and cost-effectiveness. Moreover, it was successfully applied for the determination of KANA in milk and honey samples with RSD % not more than 3.3%, suggesting the reliability of the as-designed sensor.
Collapse
Affiliation(s)
- Alanazi A Z
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali M Alaseem
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Abdullah Al Awadh
- Saudi Food and Drug Authority, Drug Sector, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahaad S Alenazi
- Department of Pharmacology, College of Medicine, University of Ha'il, Saudi Arabia
- Medical education Unit, College of Medicine, University of Ha'il, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
5
|
Hayat M, Manzoor S, Raza H, Khan MI, Shanableh A, Sajid M, Almutairi TM, Luque R. Molecularly imprinted ormosil as a sorbent for targeted dispersive solid phase micro extraction of pyriproxyfen from strawberry samples. CHEMOSPHERE 2023; 320:137835. [PMID: 36702413 DOI: 10.1016/j.chemosphere.2023.137835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Novel molecularly imprinted organically modified silica was prepared by reacting acrylamide and 3-(tri-methoxysilyl) propyl methacrylate followed by condensation and hydrolysis with tetraethyl ortho-silicate for the determination of pyriproxyfen. The sorbent proved to be highly selective for the template molecule, pyriproxyfen. The characterization of sorbent was carried out using SEM, BET and TGA. The prominent peaks in FTIR at 3700 cm-1 and 1071 cm-1 confirmed the stretching of amide group's N-H and Si-O-Si bond linkage of MIOrmosil. The pseudo-first-order model (R2 0.99) described the adsorption kinetics of the MIOrmosil, whereas among adsorption isotherms, Freundlich model showed the best fit (R2 0.99). The molecularly imprinted silica was applied for the determination of target analytes from strawberries sample using dispersive solid-phase micro extraction (DSPME) followed by high-performance liquid chromatography (HPLC). The LOD (4.93 x10-5 μg mL-1) and LOQ (1.49 x10-4 μg m-1) values were calculated by signal to noise ratio through HPLC. Results show that the maximum binding capacity and percentage recovery values of MIOrmosil were 13 mg g-1 (n = 5) and 97.3% respectively.
Collapse
Affiliation(s)
- Muhammad Hayat
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | - Hina Raza
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | - Tahani Mazyad Almutairi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Edificio Marie Curie (C 3), Campus de Rabanales, Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
6
|
Wang D, Bao Y, Tan Y, Liu L, Ye Q, Zeng C, Tan N. A novel smart stealth sorafenib delivery system based on the magnetic imprinting material modified by polyethylene glycol. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Duoduo Wang
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| | - Yuqi Bao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| | - Yaxin Tan
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| | - Lijie Liu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| | - Qiaorong Ye
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| | - Chensi Zeng
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| | - Ni Tan
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| |
Collapse
|
7
|
Hu Z, Wang J, Han S, Jiang S, Hu J, Reheman A. Study on the sustained release properties of drug-loaded nanomicelles with amphiphilic poly(amino acid)s. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2155193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, P. R. China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, P. R. China
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Siyu Han
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, P. R. China
| | - Shizhi Jiang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, P. R. China
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian 352100, P. R. China
| |
Collapse
|
8
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Precipitation Polymerization: A Powerful Tool for Preparation of Uniform Polymer Particles. Polymers (Basel) 2022; 14:polym14091851. [PMID: 35567018 PMCID: PMC9105061 DOI: 10.3390/polym14091851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Precipitation polymerization (PP) is a powerful tool to prepare various types of uniform polymer particles owing to its outstanding advantages of easy operation and the absence of any surfactant. Several PP approaches have been developed up to now, including traditional thermo-induced precipitation polymerization (TRPP), distillation precipitation polymerization (DPP), reflux precipitation polymerization (RPP), photoinduced precipitation polymerization (PPP), solvothermal precipitation polymerization (SPP), controlled/‘‘living’’ radical precipitation polymerization (CRPP) and self-stabilized precipitation polymerization (2SPP). In this review, a general introduction to the categories, mechanisms, and applications of precipitation polymerization and the recent developments are presented, proving that PP has great potential to become one of the most attractive polymerization techniques in materials science and bio-medical areas.
Collapse
|
9
|
Morsi SMM, Abd El-Aziz ME, Mohamed HA. Smart polymers as molecular imprinted polymers for recognition of target molecules. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2042287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samir M. M. Morsi
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| | | | - Heba A. Mohamed
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
10
|
Reville EK, Sylvester EH, Benware SJ, Negi SS, Berda EB. Customizable molecular recognition: advancements in design, synthesis, and application of molecularly imprinted polymers. Polym Chem 2022. [DOI: 10.1039/d1py01472b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecularly imprinted polymers (MIPs) are unlocking the door to synthetic materials that are capable of molecular recognition.
Collapse
Affiliation(s)
- Erinn K. Reville
- Department of Chemistry, University of New Hampshire, 03824, Durham, NH, USA
| | | | - Sarah J. Benware
- Department of Chemistry, University of Wisconsin-Madison, 54706, Madison, WI, USA
| | - Shreeya S. Negi
- Department of Chemistry and Biochemistry, California Polytechnic State University, 93410, San Luis Obispo, CA, USA
| | - Erik B. Berda
- Department of Chemistry, University of New Hampshire, 03824, Durham, NH, USA
| |
Collapse
|