1
|
Wang WK, Lin HY, Lin CH, Lee HH, Chen YL, Lin YHK, Chiu HW, Sheen-Chen SM, Lin YF. GRK6 palmitoylation dictates triple-negative breast cancer metastasis via recruiting the β-Arrestin 2/MAPKs/NF-κB signaling axis. Breast Cancer Res 2024; 26:193. [PMID: 39741338 DOI: 10.1186/s13058-024-01953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs. However, the mechanism underlying TNBC metastasis remains largely unknown. METHODS Bioinformatics analysis was conducted to evaluate the mRNA/protein expression and prognostic significance of G protein-coupled receptor kinase 6 (GRK6) in BC subtypes. RT-PCR assays were used to test the GRK6 expression in human BC tissues and cell lines. The in vitro cellular migration and in vivo lung colony-forming assays were established to estimate the metastatic potentials of TNBC cells. Western blotting was employed to examine protein phosphorylation, translocation and expression in the designed experiments. RESULTS Here we show that GRK6 upregulation is extensively detected in TNBC compared to normal mammary tissues and other BC subtypes and correlates with an increased risk for distant metastasis in TNBC patients. GRK6 knockdown suppressed but overexpression potentiated the cellular migration and lung colony-forming abilities of TNBC cells. Moreover, our data demonstrated that the posttranslational palmitoylation of GRK6 is extremely critical for activating β-Arrestin 2/mitogen-activated protein kinases (MAPKs)/NF-κB signaling axis and fostering the metastatic potentials of TNBC cells. Accordingly, the pharmaceutical inhibition of GRK6 kinase activity dramatically suppressed the activation of β-Arrestin 2, MAPKs and NF-κB and the cellular migration ability of highly metastatic MDA-MB231 cells. Sequentially blocking the β-Arrestin 2/MAPKs/NF-κB axis with their inhibitors predominantly mitigated the GRK6-promoted migration ability of poorly metastatic HCC1937 cells. CONCLUSION Our results not only provide a novel mechanism for TNBC metastasis but also offer a new therapeutic strategy to combat metastatic TNBC via targeting GRK6 activity.
Collapse
Affiliation(s)
- Wen-Ke Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Comprehensive Breast Center, Division of Breast Surgery and General Surgery, Department of Surgery, Cardinal Tien Hospital, Fu-Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Che-Hsuan Lin
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsun-Hua Lee
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsien Kent Lin
- Department of Obstetrics and Gynaecology, North Shore Private Hospital, Sydney, NSW, Australia
- Department of Gynecology, Ryde Hospital, Northern Sydney Local Health District, Sydney, Australia
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Shry-Ming Sheen-Chen
- Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Luo Y, Yang J, Wang Y. Quantitative proteomics assay reveals G protein-coupled receptor kinase 4-induced HepG2 cell growth inhibition. Heliyon 2024; 10:e29514. [PMID: 38638965 PMCID: PMC11024620 DOI: 10.1016/j.heliyon.2024.e29514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Background and aim To investigate the biological effects and putative biological mechanism of G protein-coupled receptor kinase 4 (GRK4) on HepG2 cells. Materials and methods Cell proliferation, cycle, and apoptosis were evaluated by Cell Counting Kit-8 and flow cytometry (FCM) in HepG2 cells infected with either the GRK4-overexpressing lentivirus vector (OE) or the negative control lentivirus vector (NC). The protein profiles and differentially expressed proteins (DEPs) of the OE and NC cells were analyzed and compared using the quantitative proteomics technique, and their function, expression, and probable mechanism were investigated using bioinformatic assays and parallel reaction monitoring (PRM). Results HepG2 cells that received the OE grew more slowly than those that received the NC. FCM revealed that, when compared to the NC cells, the OE cells had undergone S-phase cycle arrest, and neither the OE nor NC cells underwent apoptosis. Among the 7006 proteins that were identified by quantitative proteomics, 403 DEPs were examined based on the filtering parameters, with the expressions of 135 being downregulated and 268 being upregulated. In addition to being involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, the DEPs were implicated in the biological processes of cell proliferation, cycle, and metabolism. PRM verified the expressions of DEPs that were connected to the PPAR pathway. Conclusions This study shows that GRK4 prevents HepG2 cells from proliferating and causes cell cycle arrest in the S-phase, while the PPAR pathway is involved in the regulation of HepG2 cells via GRK4.
Collapse
Affiliation(s)
- Yunxiu Luo
- Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Department of Radiotherapy Oncology, Haikou, 570311, China
- Hainan Clinical Research Center for Hepatopathy and Liver Critical Illness, Haikou, 570311, China
| | - Jing Yang
- Guilin Medical University, Center for Science Research, Guilin, 541004, China
| | - Yan Wang
- Central South University, The Second Xiangya Hospital, Department of Surgery, Changsha, 410011, China
| |
Collapse
|
3
|
Chai T, Yue W, Xu P, Gildea J, Felder R. Caveolin-1, a Determinant of the Fate of MCF-7 Breast Cancer Cells. Breast Cancer (Auckl) 2024; 18:11782234241226802. [PMID: 38298330 PMCID: PMC10829489 DOI: 10.1177/11782234241226802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
Background The scaffolding protein, caveolin-1 (Cav-1), participates in multiple cellular functions including promotion of sodium excretion from the kidney. Loss of expression of Cav-1 is associated with tumorigenesis of various types of cancer. We have shown the potential link between hypertension and breast cancer via abnormal function of the G protein-coupled receptor kinase type 4 (GRK4). Objective The current studies tested the hypothesis that Cav-1 acts as a tumor-suppressive factor in breast cancer cells and enhances the sensitivity to the inhibitory effect of the type 1 dopaminergic receptor (D1R). Methods Michigan Cancer Foundation (MCF) MCF-7 cells stably expressing a Cav-1/mCherry fusion protein or mCherry alone were used as models to examine the effect of Cav-1 on cell growth, apoptosis, and senescence. Cell proliferation was determined by cell counting, cell cycle analysis (flow cytometry), and BrdU incorporation. Apoptosis was determined using the Cell Death Detection ELISA kit from Roche Diagnosis. Senescence was determined using the senescence associated beta galactosidase (SA-β-gal) assay. Reactive oxygen species (ROS) was measured using 2',7'-dichlorodihydrofluorescein diacetate. Western blot analysis was used to measure activation of signaling pathway molecules. All statistical analyses were conducted with Microsoft Excel. Results Overexpression of Cav-1 in MCF-7 cells reduced cellular growth rate. Both inhibition of proliferation and induction of cell death are contributing factors. Multiple signaling pathways were activated in Cav-1-expressing MCF-7 cells. Activation of Akt was prominent. In MCF-7-expressing Cav-1 (MCF-7 Cav-1) cells, the levels of phosphorylated Akt at S473 and T308 were increased 28- and 8.7-fold, respectively. Instead of protecting cells from apoptosis, extremely high levels of activated Akt resulted in increased levels of ROS which led to apoptosis and senescence. The tumor-suppressive effect plus downregulation of GRK4 makes Cav-1-expressing MCF-7 cells significantly more sensitive to the inhibitory effect of the D1R agonist, SKF38393. Conclusion Caveolin-1 acts as a tumor-suppressing factor via extreme activation of Akt and down regulation of survival factors such as GRK4, survivin, and cyclin D1.
Collapse
Affiliation(s)
- Tina Chai
- Department of Pathology, University of Virginia Health System, University of Virginia, Charlottesville, VA, USA
| | - Wei Yue
- Department of Pathology, University of Virginia Health System, University of Virginia, Charlottesville, VA, USA
| | - Peng Xu
- Department of Pathology, University of Virginia Health System, University of Virginia, Charlottesville, VA, USA
| | - John Gildea
- Department of Pathology, University of Virginia Health System, University of Virginia, Charlottesville, VA, USA
| | - Robin Felder
- Department of Pathology, University of Virginia Health System, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
5
|
Hermawan A, Putri H. Computational analysis of G-protein-coupled receptor kinase family members as potential targets for colorectal cancer therapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
G-protein-coupled receptor (GPCR) kinases (GRKs) interact with ligand-activated GPCR, causing intracellular phosphorylation and interfering with the intracellular signal transduction associated with the development of cancer. Colorectal cancer (CRC) is a fast-growing disease, and its molecular mechanism involves various regulatory proteins, including kinases. However, the GRK mechanism in CRC has not been explored.
Methods
We used an integrated computational approach to investigate the potential of GRK family members as targeted proteins in CRC. The GRK expression levels in tumor and normal tissues, colon adenocarcinoma samples, and metastatic colon adenocarcinoma were analyzed using ONCOMINE, GEPIA, and UALCAN, as well as TNM plots. Genetic changes in the GRK family genes were investigated using cBioportal. The prognostic value related to the gene expression of the GRK family was examined using GEPIA and UALCAN. Co-expression analysis of the GRK family was conducted using COXPRESdb. Association analysis of the Gene Ontology, KEGG pathway enrichment, and drug-gene analyses were performed using the over-representation analysis (ORA) in WebGestalt.
Results
GRK2, GRK3, and GRK5 mRNA levels increased significantly in patients with CRC and metastatic CRC. Genetic changes were detected in patients with CRC, including GRK7 (1.1%), GRK2 (1.7%), GRK4 (2.3%), GRK5 (2.5%), GRK6 (2.5%), GRK3 (2.9%), and GRK1 (4%). CRC patients with low mRNA of GRK7 levels had better disease-free and overall survival than those with high GRK7 levels. Hierarchical clustering analysis revealed significant positive correlations between GRK5 and GRK2 and between GRK2 and GRK6. KEGG pathway enrichment analysis showed that the gene network (GN) regulated several cellular pathways, such as the morphine addiction signaling and chemokine signaling pathways in cancer. The drug-gene association analysis indicated that the GN was associated with several drugs, including reboxetine, pindolol, beta-blocking agents, and protein kinase inhibitors.
Conclusion
No research has been conducted on the relation of GRK1 and GRK7 to cancer, particularly CRC. In this work, genes GRK2, GRK3, GRK5, and GRK6 were found to be oncogenes in CRC. Although inhibitors against GRK2, GRK5, and GRK6 have previously been developed, further research, particularly preclinical and clinical studies, is needed before these agents may be used to treat CRC.
Collapse
|
6
|
G Protein-Coupled Receptor Kinase 4 Is a Novel Prognostic Factor in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:2628879. [PMID: 35769816 PMCID: PMC9236775 DOI: 10.1155/2022/2628879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/25/2022]
Abstract
Purpose We previously reported that G protein-coupled receptor kinase (GRK) 4 halts cell cycle progression and induces cellular senescence in HEK293 cells. The present study was aimed at assessing the prognostic value of GRK4 in hepatocellular carcinoma (HCC). Methods GRK4 expression was detected by immunohistochemistry in paired tumoral and peritumoral tissues of 325 HCC patients. One hundred and twenty-six patients from Western China were utilized as a training cohort to develop a nomogram, while 86 patients from Eastern China were used as a validation cohort. The proliferation and migration of lentiviral-GRK4 expressing HepG2 cells were determined by MTT and wound healing assays. Results GRK4 was differentially expressed in HCC tissues. Tumoral GRK4 intensity, tumor type, and T stage were independent prognostic factors and used to form a nomogram for predicting overall survival (OS), which obtained a good concordance index of 0.82 and 0.77 in training and validation cohort, respectively. The positive and negative prediction values with nomogram were, respectively, 83% and 75% in training cohort and 100% and 52% in validation cohort. Patients with nomogram scores > 32 and 78 showed high risk for OS. Proliferation and motility capabilities were significantly restrained in GRK4-overexpressing HCC cells. Discussion. Low GRK4 expression in HCC tumor tissues indicates poor clinical outcomes. A prognostic nomogram including tumoral GRK4 expression would improve the predictive accuracy of OS in HCC patients. We also demonstrated that GRK4 overexpression inhibits proliferation and migration of HCC cells. The molecular mechanism underlying is worth further study.
Collapse
|
7
|
Yue W, Tran HT, Wang JP, Schiermeyer K, Gildea JJ, Xu P, Felder RA. The Hypertension Related Gene G-Protein Coupled Receptor Kinase 4 Contributes to Breast Cancer Proliferation. Breast Cancer (Auckl) 2021; 15:11782234211015753. [PMID: 34103922 PMCID: PMC8145586 DOI: 10.1177/11782234211015753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Clinical studies have shown that breast cancer risk is increased in hypertensive women. The underlying molecular mechanism remains undetermined. The current study tests our hypothesis that G protein coupled receptor kinase 4 (GRK4) is a molecule that links hypertension and breast cancer. GRK4 plays an important role in regulation of renal sodium excretion. Sustained activation of GRK4 as in the circumstances of single nucleotide polymorphism (SNPs) causes hypertension. Expression of GRK4 in the kidney is regulated by cMyc, an oncogene that is amplified in breast cancer. METHODS Western analysis was used to evaluate GRK4 protein expression in seven breast cancer cell lines. GRK4 gene single nucleotide polymorphism in breast cancer cell lines and in breast cancer cDNA arrays were determined using TaqMan Genotyping qPRC. The function of GRK4 was evaluated in MCF-7 cells with cMyc knock-down and GRK4 re-expression and in MDA-MB-468 cells expressing inducible GRK4 shRNA lentivirus constructs. Nuclei counting and 5-Bromo-2'-deoxy-uridine (BrdU) labeling were used to evaluate cell growth and proliferation. RESULTS Genotyping of GRK4 SNPs in breast cancer cDNA arrays (n = 94) revealed that the frequency of carrying two hypertension related SNPs A142 V or R65 L is threefold higher in breast cancer patients than in healthy people (P = 7.53E-11). GRK4 protein is expressed in seven breast cancer cell lines but not the benign mammary epithelial cell line, MCF-10A. Three hypertension related SNPs in the GRK4 gene were identified in the breast cancer cell lines. Except for BT20, all other breast cancer lines have 1-3 GRK4 SNPs of which A142 V occurs in all 6 lines. MDA-MB-468 cells contain homozygous A142 V and R65 L SNPs. Knocking down cMyc in MCF-7 cells significantly reduced the growth rate, which was rescued by re-expression of GRK4. We then generated three stable GRK4 knock-down MDA-MB-468 lines using inducible lentiviral shRNA vectors. Doxycycline (Dox) induced GRK4 silencing significantly reduced GRK4 mRNA and protein levels, growth rates, and proliferation. As a marker of cell proliferation, the percentage of BrdU-labeled cells decreased from 45 ± 3% in the cells without Dox to 32 ± 5% in the cells treated with 0.1 µg/mL Dox. CONCLUSIONS GRK4 acts as an independent proliferation promotor in breast cancer. Our results suggest that targeted inhibition of GRK4 could be a new therapy for both hypertension and breast cancer.
Collapse
Affiliation(s)
- Wei Yue
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Hanh T. Tran
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ji-ping Wang
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Katherine Schiermeyer
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - John J. Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Peng Xu
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
8
|
Wang W, He Q, Zhang H, Zhuang C, Wang Q, Li C, Sun R, Fan X, Yu J. A narrative review on the interaction between genes and the treatment of hypertension and breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:894. [PMID: 34164528 PMCID: PMC8184430 DOI: 10.21037/atm-21-2133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective The aim to discuss the close relationship between the common biological mechanisms of breast cancer and hypertension, inflammation and oxidative stress, breast cancer gene mutations breast cancer susceptibility gene (BRCA), G protein-coupled receptor kinase (GRK4), etc. and breast cancer treatment includes chemotherapy, Endocrine therapy, Targeted therapy and anti-angiogenesis drugs. In anti-angiogenesis drugs focusing on the mechanism of tyrosine kinase inhibitors (TKI) that may activate the rhoa/rock pathway to cause hypertension, as well as the relationship between breast cancer and antihypertensive drugs includes angiotensin-converting enzyme inhibitors (ACEIs), Calcium channel blockers (CCBs) and β-blockers (BBs)will be explored. Background Cardiovascular diseases (CVD) and tumors are the two major types of diseases with the highest mortality rates, while hypertension accounts for the largest proportion of CVDs. A large number of the same or similar risk factors are shared between hypertension and tumors, and they influence each other. Many patients, particularly elderly patients, often present with the coexistence of the two diseases. As medical advances have enabled clinicians to cure tumors, many patients with cancer live longer, leading to a gradual increase in the incidence of CVDs, including hypertension. With the second highest incidence among tumors, breast cancer has gradually attracted widespread attention and has been the topic of numerous studies. Studies have confirmed that CVD is one of the causes of death in elderly patients with breast cancer. Methods Publications from 1985 to 2020 were retrieved from the Web Of Science, Cochrane Library, PubMed, EMBASE and MEDLINE database. We used a mix of MeSH and keywords. Conclusions Hypertension and cancer may share a common mechanism. The screening and risk assessment of breast cancer in patients with hypertension must be strengthened. Breast cancer cardiology is the interdisciplinary study of oncology and cardiology, and in-depth research in this field may result in long-term improvements in the survival and prognosis of patients with both clinical hypertension and breast cancer.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingjian He
- Department of Breast and Thyroid Surgery, Zhoushan Hospital of Zhejiang Province, Zhoushan, China
| | - Haodong Zhang
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Chenchen Zhuang
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiongying Wang
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Caie Li
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Runmin Sun
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Fan
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Yu
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
Chaudhary PK, Kim S. The GRKs Reactome: Role in Cell Biology and Pathology. Int J Mol Sci 2021; 22:ijms22073375. [PMID: 33806057 PMCID: PMC8036551 DOI: 10.3390/ijms22073375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) are protein kinases that function in concert with arrestins in the regulation of a diverse class of G protein-coupled receptors (GPCRs) signaling. Although GRKs and arrestins are key participants in the regulation of GPCR cascades, the complex regulatory mechanisms of GRK expression, its alternation, and their function are not thoroughly understood. Several studies together with the work from our lab in recent years have revealed the critical role of these kinases in various physiological and pathophysiological processes, including cardiovascular biology, inflammation and immunity, neurodegeneration, thrombosis, and hemostasis. A comprehensive understanding of the mechanisms underlying functional interactions with multiple receptor proteins and how these interactions take part in the development of various pathobiological processes may give rise to novel diagnostic and therapeutic strategies. In this review, we summarize the current research linking the role of GRKs to various aspects of cell biology, pathology, and therapeutics, with a particular focus on thrombosis and hemostasis.
Collapse
|
10
|
Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm 2021; 2021:6655417. [PMID: 33746610 PMCID: PMC7943314 DOI: 10.1155/2021/6655417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of transmembrane proteins that transduce an external stimulus into a variety of cellular responses. They play a critical role in various pathological conditions in humans, including cancer, by regulating a number of key processes involved in tumor formation and progression. The epithelial-mesenchymal transition (EMT) is a fundamental process in promoting cancer cell invasion and tumor dissemination leading to metastasis, an often intractable state of the disease. Uncontrolled proliferation and persistent metabolism of cancer cells also induce oxidative stress, hypoxia, and depletion of growth factors and nutrients. These disturbances lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and induce a cellular condition called ER stress (ERS) which is counteracted by activation of the unfolded protein response (UPR). Many GPCRs modulate ERS and UPR signaling via ERS sensors, IRE1α, PERK, and ATF6, to support cancer cell survival and inhibit cell death. By regulating downstream signaling pathways such as NF-κB, MAPK/ERK, PI3K/AKT, TGF-β, and Wnt/β-catenin, GPCRs also upregulate mesenchymal transcription factors including Snail, ZEB, and Twist superfamilies which regulate cell polarity, cytoskeleton remodeling, migration, and invasion. Likewise, ERS-induced UPR upregulates gene transcription and expression of proteins related to EMT enhancing tumor aggressiveness. Though GPCRs are attractive therapeutic targets in cancer biology, much less is known about their roles in regulating ERS and EMT. Here, we will discuss the interplay in GPCR-ERS linked to the EMT process of cancer cells, with a particular focus on oncogenes and molecular signaling pathways.
Collapse
|
11
|
Postmortem vs. neoplastic gene expression: Clues to cancer development and therapy. Med Hypotheses 2019; 133:109381. [PMID: 31476667 DOI: 10.1016/j.mehy.2019.109381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022]
Abstract
Organismal death does not immediately end gene expression. Studies of postmortem gene expression in zebrafish and mice and in the myocardium, liver, prostate, pericardial fluid, and blood of human cadavers have identified genes whose expression is increased after organismal death. Cancer can be considered a form of "un-death" since excessively proliferating cells are typically unusually resistant to apoptosis (programmed cell death), and are subject to strong selective pressure for "uncontrolled life." The changes in gene expression observed in organismal death, particularly in mammals (mice and humans), can be compared to that observed in human neoplasia, and the comparison of these expression patterns can inform us about human cancer. Here we present a hypothesis based on the following three tenets: (a) there will be distinct and opposing patterns of gene expression between the postmortem state and cancer with respect to key physiological outputs such as growth, apoptosis, invasion, and prognosis; (b) cancer cells considered more aggressive (e.g., derived from a metastasis and/or resistant to agents that suppress growth or induce apoptosis) will exhibit expression of relevant genes more unlike that of the postmortem condition while less aggressive neoplastic cells will exhibit gene expression more similar to the postmortem condition; and (c) targeting gene expression in cancer to produce a more postmortem-like pattern will promote less tumorigenic and less aggressive cell phenotypes. To evaluate components (a) and (b) of our hypothesis, we focus on previously published gene expression data from colorectal cancer (CRC) and colonic adenoma cells and compare that to postmortem expression data. This preliminary analysis in general supports our hypothesis, with more aggressive neoplastic cell types exhibiting gene expression patterns most unlike that found in the postmortem condition; this suggests that cancer and the postmortem condition represent opposing ends of a gene expression spectrum in the balance between life and death. Subsequently, we discuss the possibilities for further testing of the hypothesis, particularly for part (c), and we also discuss the possible implications of the hypothesis for cancer therapeutics.
Collapse
|
12
|
Luo Y, Huang X, Yang J, Huang L, Li R, Wu Q, Jiang X. Proteomics analysis of G protein-coupled receptor kinase 4-inhibited cellular growth of HEK293 cells. J Proteomics 2019; 207:103445. [DOI: 10.1016/j.jprot.2019.103445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022]
|
13
|
The role of G protein-coupled receptor kinases in the pathology of malignant tumors. Acta Pharmacol Sin 2018; 39:1699-1705. [PMID: 29921886 DOI: 10.1038/s41401-018-0049-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/20/2018] [Indexed: 12/28/2022]
Abstract
G protein-coupled receptor kinases (GRKs) constitute seven subtypes of serine/threonine protein kinases that specifically recognize and phosphorylate agonist-activated G protein-coupled receptors (GPCRs), thereby terminating the GPCRs-mediated signal transduction pathway. Recent research shows that GRKs also interact with non-GPCRs and participate in signal transduction in non-phosphorylated manner. Besides, GRKs activity can be regulated by multiple factors. Changes in GRKs expression have featured prominently in various tumor pathologies, and they are associated with angiogenesis, proliferation, migration, and invasion of malignant tumors. As a result, GRKs have been intensively studied as potential therapeutic targets. Herein, we review evolving understanding of the function of GRKs, the regulation of GRKs activity and the role of GRKs in human malignant tumor pathophysiology.
Collapse
|
14
|
Jana S, Balakrishnan N, Hamid JS. Bayesian growth curve model useful for high-dimensional longitudinal data. J Appl Stat 2018. [DOI: 10.1080/02664763.2018.1517145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sayantee Jana
- Department of Mathematics and Statistics, McMaster University, Hamilton, Canada
| | | | - Jemila S. Hamid
- Department of Mathematics and Statistics, McMaster University, Hamilton, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada
| |
Collapse
|
15
|
Nogués L, Palacios-García J, Reglero C, Rivas V, Neves M, Ribas C, Penela P, Mayor F. G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin Cancer Biol 2018; 48:78-90. [DOI: 10.1016/j.semcancer.2017.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/22/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
|
16
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Xiao P, Huang X, Huang L, Yang J, Li A, Shen K, Wedegaertner PB, Jiang X. G protein-coupled receptor kinase 4-induced cellular senescence and its senescence-associated gene expression profiling. Exp Cell Res 2017; 360:273-280. [PMID: 28912086 DOI: 10.1016/j.yexcr.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Senescent cells have lost their capacity for proliferation and manifest as irreversibly in cell cycle arrest. Many membrane receptors, including G protein-coupled receptors (GPCRs), initiate a variety of intracellular signaling cascades modulating cell division and potentially play roles in triggering cellular senescence response. GPCR kinases (GRKs) belong to a family of serine/threonine kinases. Although their role in homologous desensitization of activated GPCRs is well established, the involvement of the kinases in cell proliferation is still largely unknown. In this study, we isolated GRK4-GFP expressing HEK293 cells by fluorescence-activated cell sorting (FACS) and found that the ectopic expression of GRK4 halted cell proliferation. Cells expressing GRK4 (GRK4(+)) demonstrated cell cycle G1/G0 phase arrest, accompanied with significant increase of senescence-associated-β-galactosidase (SA-β-Gal) activity. Expression profiling analysis of 78 senescence-related genes by qRT-PCR showed a total of 17 genes significantly changed in GRK4(+) cells (≥ 2 fold, p < 0.05). Among these, 9 genes - AKT1, p16INK4, p27KIP1, p19INK4, IGFBP3, MAPK14, PLAU, THBS1, TP73 - were up-regulated, while 8 genes, Cyclin A2, Cyclin D1, CDK2, CDK6, ETS1, NBN, RB1, SIRT1, were down-regulated. The increase in cyclin-dependent kinase inhibitors (p16, p27) and p38 MAPK proteins (MAPK14) was validated by immunoblotting. Neither p53 nor p21Waf1/Cip1 protein was detectable, suggesting no p53 activation in the HEK293 cells. These results unveil a novel function of GRK4 on triggering a p53-independent cellular senescence, which involves an intricate signaling network.
Collapse
Affiliation(s)
- Pingping Xiao
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China; Graduate College, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xishi Huang
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China; Center for Science Research, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Lanzhen Huang
- Center for Science Research, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jing Yang
- Center for Science Research, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ang Li
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ke Shen
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xiaoshan Jiang
- Cell Signaling Laboratory, Guilin Medical University, Guilin, Guangxi 541004, China; Graduate College, Guilin Medical University, Guilin, Guangxi 541004, China.
| |
Collapse
|
18
|
Peptide substrates for G protein-coupled receptor kinase 2. FEBS Lett 2014; 588:2129-32. [PMID: 24813628 DOI: 10.1016/j.febslet.2014.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/04/2014] [Accepted: 04/16/2014] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinases (GRKs) control the signaling and activation of G protein-coupled receptors through phosphorylation. In this study, consensus substrate motifs for GRK2 were identified from the sequences of GRK2 protein substrates, and 17 candidate peptides were synthesized to identify peptide substrates with high affinity for GRK2. GRK2 appears to require an acidic amino acid at the -2, -3, or -4 positions and its consensus phosphorylation site motifs were identified as (D/E)X1-3(S/T), (D/E)X1-3(S/T)(D/E), or (D/E)X0-2(D/E)(S/T). Among the 17 peptide substrates examined, a 13-amino-acid peptide fragment of β-tubulin (DEMEFTEAESNMN) showed the highest affinity for GRK2 (Km, 33.9 μM; Vmax, 0.35 pmol min(-1) mg(-1)), but very low affinity for GRK5. This peptide may be a useful tool for investigating cellular signaling pathways regulated by GRK2.
Collapse
|
19
|
So CH, Michal A, Komolov KE, Luo J, Benovic JL. G protein-coupled receptor kinase 2 (GRK2) is localized to centrosomes and mediates epidermal growth factor-promoted centrosomal separation. Mol Biol Cell 2013; 24:2795-806. [PMID: 23904266 PMCID: PMC3771943 DOI: 10.1091/mbc.e13-01-0013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) play a central role in regulating receptor signaling, but recent studies suggest a broader role in modulating normal cellular functions. For example, GRK5 has been shown to localize to centrosomes and regulate microtubule nucleation and cell cycle progression. Here we demonstrate that GRK2 is also localized to centrosomes, although it has no role in centrosome duplication or microtubule nucleation. Of interest, knockdown of GRK2 inhibits epidermal growth factor receptor (EGFR)-mediated separation of duplicated centrosomes. This EGFR/GRK2-mediated process depends on the protein kinases mammalian STE20-like kinase 2 (Mst2) and Nek2A but does not involve polo-like kinase 1. In vitro analysis and dominant-negative approaches reveal that GRK2 directly phosphorylates and activates Mst2. Collectively these findings demonstrate that GRK2 is localized to centrosomes and plays a central role in mitogen-promoted centrosome separation most likely via its ability to phosphorylate Mst2.
Collapse
Affiliation(s)
- Christopher H So
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | | | |
Collapse
|
20
|
Kaur G, Kim J, Kaur R, Tan I, Bloch O, Sun MZ, Safaee M, Oh MC, Sughrue M, Phillips J, Parsa AT. G-protein coupled receptor kinase (GRK)-5 regulates proliferation of glioblastoma-derived stem cells. J Clin Neurosci 2013; 20:1014-8. [PMID: 23693024 DOI: 10.1016/j.jocn.2012.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/10/2012] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is a grade IV malignant brain tumor with high mortality and has been well known to involve many molecular pathways, including G-protein coupled receptor (GPCR)-mediated signaling (such as epithelial growth factor receptor [EGFR] and platelet derived growth factor receptor [PDGFR]). G protein-coupled receptor kinases (GRK) directly regulate GPCR activity by phosphorylating activated agonist-bound receptors to desensitize signaling and internalize receptors through beta-arrestins. Recent studies in various cancers, including prostate and breast cancer, have highlighted the role of change in GRK expression to oncogenesis and tumor proliferation. In this study, we evaluated the expression of GRK5 in grade II to grade IV glioma specimens using immunohistochemistry and found that GRK5 expression levels are highly correlated with aggressiveness of glioma. We used culture conditions to selectively promote the growth of either glioblastoma cells with stem cell markers (GSC) or differentiated glioblastoma cells (DGC) from fresh GBM specimens. GSC are known to be highly invasive and mobile, and have the capacity to self-renew and are more resistant to chemotherapy and radiation compared to differentiated populations of GBM. We examined the expression of GRK5 in these two sets of culturing conditions for GBM cells and found that GRK5 expression is upregulated in GSC compared to differentiated GBM cells. To better understand the role of GRK5 in GBM-derived stem cells, we created stable GRK5 knockdown and evaluated the proliferation rate. Using an ATP chemiluminescence assay, we show, for the first time, that knocking down the expression of GRK5 decreased the proliferation rate of GSC in contrast to control.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, Babwah AV, Bhattacharya M. β-Arrestin2 regulates lysophosphatidic acid-induced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PLoS One 2013; 8:e56174. [PMID: 23405264 PMCID: PMC3566084 DOI: 10.1371/journal.pone.0056174] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/07/2013] [Indexed: 12/29/2022] Open
Abstract
β-Arrestins play critical roles in chemotaxis and cytoskeletal reorganization downstream of several receptor types, including G protein-coupled receptors (GPCRs), which are targets for greater than 50% of all pharmaceuticals. Among them, receptors for lysophosphatidic acid (LPA), namely LPA(1) are overexpressed in breast cancer and promote metastatic spread. We have recently reported that β-arrestin2 regulates LPA(1)-mediated breast cancer cell migration and invasion, although the underlying molecular mechanisms are not clearly understood. We show here that LPA induces activity of the small G protein, Rap1 in breast cancer cells in a β-arrestin2-dependent manner, but fails to activate Rap1 in non-malignant mammary epithelial cells. We found that Rap1A mRNA levels are higher in human breast tumors compared to healthy patient samples and Rap1A is robustly expressed in human ductal carcinoma in situ and invasive tumors, in contrast to the normal mammary ducts. Rap1A protein expression is also higher in aggressive breast cancer cells (MDA-MB-231 and Hs578t) relative to the weakly invasive MCF-7 cells or non-malignant MCF10A mammary cells. Depletion of Rap1A expression significantly impaired LPA-stimulated migration of breast cancer cells and invasiveness in three-dimensional Matrigel cultures. Furthermore, we found that β-arrestin2 associates with the actin binding protein IQGAP1 in breast cancer cells, and is necessary for the recruitment of IQGAP1 to the leading edge of migratory cells. Depletion of IQGAP1 blocked LPA-stimulated breast cancer cell invasion. Finally, we have identified that LPA enhances the binding of endogenous Rap1A to β-arrestin2, and also stimulates Rap1A and IQGAP1 to associate with LPA(1). Thus our data establish novel roles for Rap1A and IQGAP1 as critical regulators of LPA-induced breast cancer cell migration and invasion.
Collapse
MESH Headings
- Apoptosis/drug effects
- Arrestins/genetics
- Arrestins/metabolism
- Blotting, Western
- Breast/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Adhesion/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chemotaxis/drug effects
- Female
- Humans
- Immunoenzyme Techniques
- Lysophospholipids/pharmacology
- Neoplasm Invasiveness
- Neoplasm Staging
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Shelterin Complex
- Signal Transduction/drug effects
- Telomere-Binding Proteins/genetics
- Telomere-Binding Proteins/metabolism
- beta-Arrestins
- ras GTPase-Activating Proteins/antagonists & inhibitors
- ras GTPase-Activating Proteins/genetics
- ras GTPase-Activating Proteins/metabolism
Collapse
Affiliation(s)
- Mistre Alemayehu
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Magdalena Dragan
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Cynthia Pape
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Iram Siddiqui
- Department of Pathology, Western University, London, Ontario, Canada
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Andy V. Babwah
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- The Children’s Health Research Institute, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynecology, Western University, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
So CH, Michal AM, Mashayekhi R, Benovic JL. G protein-coupled receptor kinase 5 phosphorylates nucleophosmin and regulates cell sensitivity to polo-like kinase 1 inhibition. J Biol Chem 2012; 287:17088-17099. [PMID: 22467873 PMCID: PMC3366848 DOI: 10.1074/jbc.m112.353854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/27/2012] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition.
Collapse
Affiliation(s)
- Christopher H So
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Allison M Michal
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Rouzbeh Mashayekhi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
23
|
Elevated β-arrestin1 expression correlated with risk stratification in acute lymphoblastic leukemia. Int J Hematol 2011; 93:494-501. [PMID: 21479985 DOI: 10.1007/s12185-011-0824-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/22/2011] [Accepted: 03/22/2011] [Indexed: 01/15/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the main subtype of childhood leukemia. Risk stratification is pivotal for ALL prognosis and individualized therapy. The current factors for risk stratification include clinical and laboratory features, cytogenetic characteristics of the blast, early response to chemotherapy, and genetic factors. Analyses of gene expression are becoming increasingly important in ALL risk stratification. β-Arrestin1, a multifunctional scaffold protein mediating many intracellular signaling networks, has been shown to be involved in many tumors. However, little is known of β-arrestin1 in leukemia. In this study, we found that β-arrestin1 was significantly elevated in 155 newly diagnosed ALL patients, compared with 51 controls. Further analysis showed that β-arrestin1 expression was positively related with risk classification and white blood cell count in ALL. Moreover, expression of Notch1, an essential gene for developing hematological cells and T-ALL, was found to be negatively correlated with β-arrestin1 in ALL. In conclusion, β-arrestin1 may be a useful predictor of risk stratification and prognosis of ALL, and thus of potential use in the design of individualized therapy strategies.
Collapse
|