1
|
Aden D, Zaheer S, Khan S, Jairajpuri ZS, Jetley S. Navigating the landscape of HPV-associated cancers: From epidemiology to prevention. Pathol Res Pract 2024; 263:155574. [PMID: 39244910 DOI: 10.1016/j.prp.2024.155574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Human Papillomavirus (HPV) is a widespread infection associated with various cancers, including cervical, oropharyngeal, anal, and genital cancers. This infection contributes to 5 % of global cancer cases annually, affecting approximately 625,600 women and 69,400 men. Cervical cancer remains the most prevalent HPV-linked cancer among females, with the highest incidence seen in low and middle-income countries (LMICs). While most HPV infections are transient, factors such as HPV variants, age, gender, and socioeconomic status influence transmission risks. HPV is categorized into high-risk (HR-HPV) and low-risk types, with strains like HPV 16 and 18 displaying distinct demographic patterns. The intricate pathogenesis of HPV involves genetic and epigenetic interactions, with HPV oncogenes (E6 and E7) and integration into host DNA playing a pivotal role in driving malignancies. Early diagnostics, utilizing HPV DNA testing with surrogate markers such as p16, and advanced molecular techniques like PCR, liquid biopsy, and NGS, significantly impact the management of HPV-induced cancers. Effectively managing HPV-related cancers demands a multidisciplinary approach, including immunotherapy, integrating current therapies, ongoing trials, and evolving treatments. Prevention via HPV vaccination and the inclusion of cervical cancer screening in national immunization programs by conventional Pap smear examination and HPV DNA testing remains fundamental.Despite the preventability of HPV-related cancers, uncertainties persist in testing, vaccination, and treatment. This review article covers epidemiology, pathogenesis, diagnostics, management, prevention strategies, challenges, and future directions. Addressing issues like vaccine hesitancy, healthcare disparities, and advancing therapies requires collaboration among researchers, healthcare providers, policymakers, and the public. Advancements in understanding the disease's molecular basis and clinical progression are crucial for early detection, proper management, and improved outcomes.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, HIMSR, Jamia Hamdard, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, VMMC and Safdarjang Hospital, New Delhi, India.
| | - Sabina Khan
- Department of Pathology, HIMSR, Jamia Hamdard, New Delhi, India
| | | | - Sujata Jetley
- Department of Pathology, HIMSR, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Li S, He X, Li S, Su Y, Wang X, Li C. The prevalence of HPV in Chongqing, China from 2017 to 2022: a retrospective cohort study. Sci Rep 2024; 14:23973. [PMID: 39397097 PMCID: PMC11471860 DOI: 10.1038/s41598-024-74588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND AND AIMS Human papillomavirus (HPV) infection is widespread. The regional differences in infection rates and dominant HPV types are a significant aspect of the virus's epidemiological characteristics. In China, these differences are further influenced by the country's diverse ethnic composition, as well as varying economic and cultural conditions across regions. Additionally, factors such as population migration contribute to the exacerbation of these regional disparities in HPV infection rates. METHODS We conducted an analysis of the current prevalence of HPV among 108,863 patients in Chongqing from 2017 to 2022, along with an investigation into the interaction between HPV and vaginal microbiota. Additionally, we explored the relationship between HPV clearance time and disease outcomes. RESULTS Our findings revealed an overall HPV positive rate of 30.14% (32,813/108,863) in Chongqing, China. The top five HPV positive rates were as follows: HPV52 (7.78%), HPV16 (5.85%), HPV58 (4.41%), HPV53 (3.17%), and HPV39 (2.47%). The age-related trend of HPV infection exhibited a bimodal curve. Importantly, the positive rate of high-risk HPV (BV: 24.74%, AV: 24.38%, VVC: 18.19%, TV: 22.81%) was significantly higher than those in the control group (all P<0.05). Follow-up for 4 years, we observed an overall clearance rate of HPV at 92.20%, with a median clearance time of 13 (1-61) months. CONCLUSION These findings hold significant implications for the Chinese government in evaluating the prevalence of HPV in the Chongqing region and formulating effective HPV prevention strategies. Moreover, these findings could contribute to the enhancement of public health initiatives related to HPV in the region.
Collapse
Affiliation(s)
- Shu Li
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401174, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, 120 Longshan Road, Chongqing, 401174, China
| | - Xiao He
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401174, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, 120 Longshan Road, Chongqing, 401174, China
| | - Siyue Li
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401174, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, 120 Longshan Road, Chongqing, 401174, China
| | - Yan Su
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401174, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, 120 Longshan Road, Chongqing, 401174, China
| | - Xiaotong Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401174, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Chongqing, 401174, China
| | - Chunli Li
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401174, China.
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, 120 Longshan Road, Chongqing, 401174, China.
| |
Collapse
|
3
|
Xu XS, Ma YS, Dai RH, Zhang HL, Yang QX, Fan QY, Liu XY, Liu JB, Feng WW, Meng H, Fu D, Yu H, Shen J. Identification of novel genomic hotspots and tumor-relevant genes via comprehensive analysis of HPV integration in Chinese patients of cervical cancer. Am J Cancer Res 2024; 14:4665-4682. [PMID: 39417198 PMCID: PMC11477843 DOI: 10.62347/kkle8602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Cervical cancer accounts for 10-15% of cancer-related mortality among women globally. Infection with high-risk human papillomavirus (HPV) types constitutes a significant etiological factor in the development of cervical carcinoma. The integration of HPV DNA into the host genome is considered a pivotal event in cervical carcinogenesis. Nevertheless, the precise mechanisms underlying HPV integration and its role in promoting cancer progression remain inadequately understood. Therefore, this study aims to identify potential common denominators at HPV DNA integration sites and to analyze the adjacent cellular sequences. We conducted whole-genome sequencing on 13 primary cervical cancer samples, employing the chromosomal coordinates of 537 breakpoints to assess the statistical overrepresentation of integration sites in relation to various chromatin features. Our analysis, which encompassed all chromosomes, identified several integration hotspots within the human genome, notably at 14q32.2, 10p15, and 2q37. Additionally, our findings indicated a preferential integration of HPV DNA into intragenic and gene-dense regions of human chromosomes. A substantial number of host cellular genes impacted by the integration sites were associated with cancer, including IKZF2, IL26, AHRR, and PDCD6. Furthermore, the cellular genes targeted by integration were enriched in tumor-related terms and pathways, as demonstrated by gene ontology and KEGG analysis. In conclusion, these findings enhance our understanding of HPV integration sites and provide deeper insights into the molecular mechanisms underlying the pathogenesis of cervical carcinoma.
Collapse
Affiliation(s)
- Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - Yu-Shui Ma
- Institute of Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226631, Jiangsu, China
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Rong-Hua Dai
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai 200240, China
| | - Huan-Le Zhang
- Department of Radiotherapy, Suzhou Ninth People’s HospitalSuzhou 215299, Jiangsu, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226631, Jiangsu, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226631, Jiangsu, China
| | - Wei-Wei Feng
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai 200240, China
| | - Da Fu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226631, Jiangsu, China
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Jian Shen
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| |
Collapse
|
4
|
Sastre-Garau X, Estrada-Virrueta L, Radvanyi F. HPV DNA Integration at Actionable Cancer-Related Genes Loci in HPV-Associated Carcinomas. Cancers (Basel) 2024; 16:1584. [PMID: 38672666 PMCID: PMC11048798 DOI: 10.3390/cancers16081584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
In HPV-associated carcinomas, some examples of cancer-related genes altered by viral insertion and corresponding to potential therapeutic targets have been described, but no quantitative assessment of these events, including poorly recurrent targets, has been reported to date. To document these occurrences, we built and analyzed a database comprised of 1455 cases, including HPV genotypes and tumor localizations. Host DNA sequences targeted by viral integration were classified as "non-recurrent" (one single reported case; 838 loci), "weakly recurrent" (two reported cases; 82 loci), and highly recurrent (≥3 cases; 43 loci). Whereas the overall rate of cancer-related target genes was 3.3% in the Gencode database, this rate increased to 6.5% in "non-recurrent", 11.4% in "weakly recurrent", and 40.1% in "highly recurrent" genes targeted by integration (p = 4.9 × 10-4). This rate was also significantly higher in tumors associated with high-risk HPV16/18/45 than other genotypes. Among the genes targeted by HPV insertion, 30.2% corresponded to direct or indirect druggable targets, a rate rising to 50% in "highly recurrent" targets. Using data from the literature and the DepMap 23Q4 release database, we found that genes targeted by viral insertion could be new candidates potentially involved in HPV-associated oncogenesis. A more systematic characterization of HPV/host fusion DNA sequences in HPV-associated cancers should provide a better knowledge of HPV-driven carcinogenesis and favor the development of personalize patient treatments.
Collapse
Affiliation(s)
- Xavier Sastre-Garau
- Department of Pathology, Centre Hospitalier Intercommunal de Créteil, 40, Avenue de Verdun, 94010 Créteil, France
| | - Lilia Estrada-Virrueta
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; (L.E.-V.); (F.R.)
| | - François Radvanyi
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; (L.E.-V.); (F.R.)
| |
Collapse
|
5
|
Xu S, Shi C, Zhou R, Han Y, Li N, Qu C, Xia R, Zhang C, Hu Y, Tian Z, Liu S, Wang L, Li J, Zhang Z. Mapping the landscape of HPV integration and characterising virus and host genome interactions in HPV-positive oropharyngeal squamous cell carcinoma. Clin Transl Med 2024; 14:e1556. [PMID: 38279874 PMCID: PMC10819103 DOI: 10.1002/ctm2.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Human papillomavirus (HPV) integration into the host genome is an important factor in HPV(+)OPSCC carcinogenesis, in conjunction with HPV oncoproteins E6/E7. However, a well-studied investigation about virus-host interaction still needs to be completed. Our objective is to characterise HPV integration to investigate potential mechanisms of tumourigenesis independent of E6/E7 oncoproteins. MATERIALS AND METHODS High-throughput viral integration detection was performed on 109 HPV(+)OPSCC tumours with relevant clinicopathological information. Of these tumours, 38 tumours underwent targeted gene sequencing, 29 underwent whole exome sequencing and 26 underwent RNA sequencing. RESULTS HPV integration was detected in 94% of tumours (with a mean integration count of 337). Tumours occurring at the tonsil/oropharyngeal wall that exhibit higher PD-L1 expression demonstrated increased integration sites (p = .024). HPV exhibited a propensity for integration at genomic sites located within specific fragile sites (FRA19A) or genes associated with functional roles such as cell proliferation and differentiation (PTEN, AR), immune evasion (CD274) and glycoprotein biosynthesis process (FUT8). The viral oncogenes E2, E4, E6 and E7 tended to remain intact. HPV fragments displayed enrichment within host copy number variation (CNV) regions. However, insertions into genes related to altered homologous recombination repair were infrequent. Genes with integration had distinct expression levels. Fifty-nine genes whose expression level was affected by viral integration were identified, for example, EPHB1, which was reported to be involved in cellular protein metabolic process. CONCLUSIONS HPV can promote oncogenesis through recurrent integration into functional host genome regions, leading to subsequent genomic aberrations and gene expression disruption. This study characterises viral integrations and virus-host interactions, enhancing our understanding of HPV-related carcinogenesis mechanisms.
Collapse
Affiliation(s)
- Shengming Xu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Chaoji Shi
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Rong Zhou
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Yong Han
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - NianNian Li
- Department of BioinfomaticsSequantaShanghaiChina
| | - Chuxiang Qu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Ronghui Xia
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Chunye Zhang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Yuhua Hu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhen Tian
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Shuli Liu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Lizhen Wang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Jiang Li
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
6
|
Aggarwal S, Agarwal P, Singh AK. Human papilloma virus vaccines: A comprehensive narrative review. Cancer Treat Res Commun 2023; 37:100780. [PMID: 38006748 DOI: 10.1016/j.ctarc.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Cervical cancer is one of the most common cancers in women aged 15-44 years in the world, with more than three-quarters of cases diagnosed at a locally advanced clinical stage with minor prospects of survival. Although only a small percentage of women with Human Papilloma Virus (HPV) develop cervical cancer and most of the HPV infections are cleared subsequently at primary stage itself, but seroconversion not always guarantees that the individual is immune to HPV. The advent of the cervical carcinoma vaccine has raised the expectations that eradication of cervical carcinoma might be possible in the near future as it exhibited remarkably high efficacy against the vaccine-specific types in naive women with no serious vaccine-related adverse events. Few prophylactic HPV vaccines are currently licensed in over 100 countries. It has also been suggested that vaccinating both men and women is more beneficial than vaccinating only females. Vaccination is a cost-effective strategy to reduce the incidence of cervical cancer and mortality compared to no vaccination based on the cost of cancer treatment. Well-coordinated vaccination strategy with focus on adolescent girls and if possible, boys can lead to dramatic impact on disease reduction around the world.
Collapse
Affiliation(s)
- Sumit Aggarwal
- Division of ECD, Indian Council of Medical Research, Ansari Nagar, New-Delhi, 110029, India.
| | - Pragati Agarwal
- Division of ECD, Indian Council of Medical Research, Ansari Nagar, New-Delhi, 110029, India
| | - Amit Kumar Singh
- National JALMA Institute of Leprosy And Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
7
|
Rossi NM, Dai J, Xie Y, Wangsa D, Heselmeyer-Haddad K, Lou H, Boland JF, Yeager M, Orozco R, Freites EA, Mirabello L, Gharzouzi E, Dean M. Extrachromosomal Amplification of Human Papillomavirus Episomes Is a Mechanism of Cervical Carcinogenesis. Cancer Res 2023; 83:1768-1781. [PMID: 36971511 PMCID: PMC10239328 DOI: 10.1158/0008-5472.can-22-3030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
SIGNIFICANCE Multimers of the HPV genome are generated in cervical tumors replicating as extrachromosomal episomes, which is associated with deletion and rearrangement of the HPV genome and provides a mechanism for oncogenesis without integration.
Collapse
Affiliation(s)
- Nicole M. Rossi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jieqiong Dai
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yi Xie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Darawalee Wangsa
- Center for Cancer Research, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerstin Heselmeyer-Haddad
- Center for Cancer Research, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Lou
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph F. Boland
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Enrique Alvirez Freites
- Hospital Central Universitario “Dr. Antonio M Pineda,” Barquisimeto, Lara State, Venezuela, and Universidad Andino de Cusco, Cusco, Perú
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
8
|
Wang S, Luo Z, Liu W, Hu T, Zhao Z, Rosenfeld MG, Song X. The 3D genome and its impacts on human health and disease. LIFE MEDICINE 2023; 2:lnad012. [PMID: 39872109 PMCID: PMC11749360 DOI: 10.1093/lifemedi/lnad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/20/2023] [Indexed: 01/29/2025]
Abstract
Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.
Collapse
Affiliation(s)
- Siqi Wang
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhengyu Luo
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Weiguang Liu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tengfei Hu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Gupta AK, Kumar M. An integrative approach toward identification and analysis of therapeutic targets involved in HPV pathogenesis with a focus on carcinomas. Cancer Biomark 2023; 36:31-52. [PMID: 36245368 DOI: 10.3233/cbm-210413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Persistent infection of high-risk HPVs is known to cause diverse carcinomas, mainly cervical, oropharyngeal, penile, etc. However, efficient treatment is still lacking. OBJECTIVE Identify and analyze potential therapeutic targets involved in HPV oncogenesis and repurposing drug candidates. METHODS Integrative analyses were performed on the compendium of 1887 HPV infection-associated or integration-driven disrupted genes cataloged from the Open Targets Platform and HPVbase resource. Potential target genes are prioritized using STRING, Cytoscape, cytoHubba, and MCODE. Gene ontology and KEGG pathway enrichment analysis are performed. Further, TCGA cancer genomic data of CESC and HNSCC is analyzed. Moreover, regulatory networks are also deduced by employing NetworkAnalyst. RESULTS We have implemented a unique approach for identifying and prioritizing druggable targets and repurposing drug candidates against HPV oncogenesis. Overall, hundred key genes with 44 core targets were prioritized with transcription factors (TFs) and microRNAs (miRNAs) regulators pertinent to HPV pathogenesis. Genomic alteration profiling further substantiated our findings. Among identified druggable targets, TP53, NOTCH1, PIK3CA, EP300, CREBBP, EGFR, ERBB2, PTEN, and FN1 are frequently mutated in CESC and HNSCC. Furthermore, PIK3CA, CCND1, RFC4, KAT5, MYC, PTK2, EGFR, and ERBB2 show significant copy number gain, and FN1, CHEK1, CUL1, EZH2, NRAS, and H2AFX was marked for the substantial copy number loss in both carcinomas. Likewise, under-explored relevant regulators, i.e., TFs (HINFP, ARID3A, NFATC2, NKX3-2, EN1) and miRNAs (has-mir-98-5p, has-mir-24-3p, has-mir-192-5p, has-mir-519d-3p) is also identified. CONCLUSIONS We have identified potential therapeutic targets, transcriptional and post-transcriptional regulators to explicate HPV pathogenesis as well as potential repurposing drug candidates. This study would aid in biomarker and drug discovery against HPV-mediated carcinoma.
Collapse
Affiliation(s)
- Amit Kumar Gupta
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Løvestad AH, Repesa A, Costanzi JM, Lagström S, Christiansen IK, Rounge TB, Ambur OH. Differences in integration frequencies and APOBEC3 profiles of five high-risk HPV types adheres to phylogeny. Tumour Virus Res 2022; 14:200247. [PMID: 36100161 PMCID: PMC9485212 DOI: 10.1016/j.tvr.2022.200247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent infection with Human Papillomavirus (HPV) is responsible for almost all cases of cervical cancers, and HPV16 and HPV18 associated with the majority of these. These types differ in the proportion of viral minor nucleotide variants (MNVs) caused by APOBEC3 mutagenesis as well as integration frequencies. Whether these traits extend to other types remains uncertain. This study aimed to investigate and compare genomic variability and chromosomal integration in the two phylogenetically distinct Alpha-7 and Alpha-9 clades of carcinogenic HPV types. The TaME-seq protocol was employed to sequence cervical cell samples positive for HPV31, HPV33 or HPV45 and combine these with data from a previous study on HPV16 and HPV18. APOBEC3 mutation signatures were found in Alpha-9 (HPV16/31/33) but not in Alpha-7 (HPV18/45). HPV45 had significantly more MNVs compared to the other types. Alpha-7 had higher integration frequency compared to Alpha-9. An increase in integration frequency with increased diagnostic severity was found for Alpha-7. The results highlight important differences and broaden our understanding of the molecular mechanisms behind cervical cancer induced by high-risk HPV types from the Alpha-7 and Alpha-9 clades.
Collapse
Affiliation(s)
- Alexander Hesselberg Løvestad
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Adina Repesa
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Jean-Marc Costanzi
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway; Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ole Herman Ambur
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
11
|
Shao L, Shi R, Zhao Y, Liu H, Lu A, Ma J, Cai Y, Fuksenko T, Pelayo A, Shah NN, Kochenderfer JN, Norberg SM, Hinrichs C, Highfill SL, Somerville RP, Panch SR, Jin P, Stroncek DF. Genome-wide profiling of retroviral DNA integration and its effect on clinical pre-infusion CAR T-cell products. J Transl Med 2022; 20:514. [DOI: 10.1186/s12967-022-03729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Clinical CAR T-cell therapy using integrating vector systems represents a promising approach for the treatment of hematological malignancies. Lentiviral and γ-retroviral vectors are the most commonly used vectors in the manufacturing process. However, the integration pattern of these viral vectors and subsequent effect on CAR T-cell products is still unclear.
Methods
We used a modified viral integration sites analysis (VISA) pipeline to evaluate viral integration events around the whole genome in pre-infusion CAR T-cell products. We compared the differences of integration pattern between lentiviral and γ-retroviral products. We also explored whether the integration sites correlated with clinical outcomes.
Results
We found that γ-retroviral vectors were more likely to insert than lentiviral vectors into promoter, untranslated, and exon regions, while lentiviral vector integration sites were more likely to occur in intron and intergenic regions. Some integration events affected gene expression at the transcriptional and post-transcriptional level. Moreover, γ-retroviral vectors showed a stronger impact on the host transcriptome. Analysis of individuals with different clinical outcomes revealed genes with differential enrichment of integration events. These genes may affect biological functions by interrupting amino acid sequences and generating abnormal proteins, instead of by affecting mRNA expression. These results suggest that vector integration is associated with CAR T-cell efficacy and clinical responses.
Conclusion
We found differences in integration patterns, insertion hotspots and effects on gene expression vary between lentiviral and γ-retroviral vectors used in CAR T-cell products and established a foundation upon which we can conduct further analyses.
Collapse
|
12
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
13
|
Labarge B, Hennessy M, Zhang L, Goldrich D, Chartrand S, Purnell C, Wright S, Goldenberg D, Broach JR. Human Papillomavirus Integration Strictly Correlates with Global Genome Instability in Head and Neck Cancer. Mol Cancer Res 2022; 20:1420-1428. [PMID: 35657601 PMCID: PMC9437566 DOI: 10.1158/1541-7786.mcr-21-0831] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023]
Abstract
Human papillomavirus (HPV)-positive head and neck cancers, predominantly oropharyngeal squamous cell carcinoma (OPSCC), exhibit epidemiologic, clinical, and molecular characteristics distinct from those OPSCCs lacking HPV. We applied a combination of whole-genome sequencing and optical genome mapping to interrogate the genome structure of HPV-positive OPSCCs. We found that the virus had integrated in the host genome in two thirds of the tumors examined but resided solely extrachromosomally in the other third. Integration of the virus occurred at essentially random sites within the genome. Focal amplification of the virus and the genomic sequences surrounding it often occurred subsequent to integration, with the number of tandem repeats in the chromosome accounting for the increased copy number of the genome sequences flanking the site of integration. In all cases, viral integration correlated with pervasive genome-wide somatic alterations at sites distinct from that of viral integration and comprised multiple insertions, deletions, translocations, inversions, and point mutations. Few or no somatic mutations were present in tumors with only episomal HPV. Our data could be interpreted by positing that episomal HPV is captured in the host genome following an episode of global genome instability during tumor development. Viral integration correlated with higher grade tumors, which may be explained by the associated extensive mutation of the genome and suggests that HPV integration status may inform prognosis. IMPLICATIONS Our results indicate that HPV integration in head and neck cancer correlates with extensive pangenomic structural variation, which may have prognostic implications.
Collapse
Affiliation(s)
- Brandon Labarge
- Department of Otolaryngology, Penn State College of Medicine, Hershey, Pennsylvania.,Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Max Hennessy
- Department of Otolaryngology, Penn State College of Medicine, Hershey, Pennsylvania.,Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Lijun Zhang
- Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - David Goldrich
- Department of Otolaryngology, Penn State College of Medicine, Hershey, Pennsylvania.,Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania
| | - Scott Chartrand
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Carson Purnell
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sage Wright
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - David Goldenberg
- Department of Otolaryngology, Penn State College of Medicine, Hershey, Pennsylvania
| | - James R. Broach
- Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania.,Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania.,Corresponding Author: James R. Broach, Department of Biochemistry, Penn State College of Medicine, Hershey, PA 17033. Phone: 717-531-8586; E-mail:
| |
Collapse
|
14
|
Park NJY, Park CSY, Jeong JY, Kim M, Yoo SH, Chong GO, Hong DG, Park JY. Strategic Significance of Low Viral Load of Human Papillomavirus in Uterine Cervical Cytology Specimens. Diagnostics (Basel) 2022; 12:diagnostics12081855. [PMID: 36010208 PMCID: PMC9406681 DOI: 10.3390/diagnostics12081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Infection with high-risk (HR) Human Papillomavirus (HPV) is associated with the development of precancerous lesions or invasive carcinoma of the uterine cervix. Thus, the high viral load (VL) of HR-HPV DNA currently serves as a representative quantitative marker for cervical cancer. However, the clinical significance of low HPV DNA VL remains undetermined. This study aimed to evaluate the clinical association between the low HPV DNA VL and cytology/histologic diagnosis of cervical samples. We searched the electronic medical databases for the resultant analyses of HPV genotyping among patients who underwent treatment for any cervical lesion or who had undergone gynecological examinations with any positive HPV results according to the national cancer screening service between 2015 and 2016. HPV testing with genotyping and semi-quantitative VL measurement was conducted using an AnyplexTM II H28 Detection assay (H28 assay, Seegene, Seoul, Republic of Korea). The H28 assay is a multiplex semi-quantitative real-time PCR test using the tagging of oligonucleotide cleavage and extension (TOCE) technology. The VL was semi-quantified as high (3+; positive signal before 31 PCR cycles), intermediate (2+; positive between 31 and 39 PCR cycles), or low (1+; positive after 40 PCR cycles). Out of 5940 HPV VL analyses, 356 assays (5.99%) were reported as low VL (1+) of HPV DNA. Matched cytology diagnoses were mostly negative findings (n = 347, 97.5%), except for seven cases of atypical squamous cells of undetermined significance (1.9%) and two cases of atypical glandular cells (0.6%). During the follow-up periods, abnormal cytologic diagnoses were identified, including one case of high-grade squamous intraepithelial lesion (HSIL) and two low-grade squamous intraepithelial lesions (LSILs). The matched, confirmative histologic diagnosis of HSIL cytology was compatible with chronic inflammation, wherein the two LSILs had regular check-ups. None revealed clinically concerned outcomes associated with HPV-related squamous lesions. The cytology was most likely negative for malignancy when the VL of HPV DNA was low (1+). Additional strategic monitoring and management may thus be unnecessary.
Collapse
Affiliation(s)
- Nora Jee-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (N.J.-Y.P.); (J.Y.J.); (M.K.)
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41405, Korea;
- KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41566, Korea
| | | | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (N.J.-Y.P.); (J.Y.J.); (M.K.)
| | - Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (N.J.-Y.P.); (J.Y.J.); (M.K.)
| | - Su Hyun Yoo
- Department of Pathology, National Police Hospital, Seoul 05715, Korea;
| | - Gun Oh Chong
- Clinical Omics Research Center, School of Medicine, Kyungpook National University, Daegu 41405, Korea;
- KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41566, Korea
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea;
| | - Dae Gy Hong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea;
| | - Ji Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea; (N.J.-Y.P.); (J.Y.J.); (M.K.)
- Correspondence: ; Tel.: +82-53-200-3405; Fax: +82-53-200-3399
| |
Collapse
|
15
|
Yang D, Zhang J, Cui X, Ma J, Wang C, Piao H. Risk Factors Associated With Human Papillomavirus Infection, Cervical Cancer, and Precancerous Lesions in Large-Scale Population Screening. Front Microbiol 2022; 13:914516. [PMID: 35847094 PMCID: PMC9282163 DOI: 10.3389/fmicb.2022.914516] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer is the most common gynecological malignancy and screening for risk factors with early detection has been shown to reduce the mortality. In this study, we aimed to analyze the characteristics and risk factors of human papillomavirus (HPV) infection and precancerous lesions in women and provide clinical evidence for developing strategies to prevent cervical precancerous lesions and cancer in women. Furthermore, we evaluated the influencing factors for high-risk HPV infection. From April 2018 to December 2021, 10,628 women were recruited for cervical cancer screening at Liaoning Cancer Hospital, Shenyang Sujiatun District Women’s and Infants Hospital, Benxi Manchu Autonomous County People’s Hospital, and Shandong Affiliated Hospital of Qingdao University. The study participants were tested to determine if they were HPV-positive (HPV +) or underwent thinprep cytology test (TCT) for atypical squamous cells of undetermined significance (ASCUS) and above. Furthermore, colposcopies and biopsies were performed for the histopathological examination. Finally, 9991 cases were included in the statistical analysis, and the factors influencing HPV infection and those related to cervical cancer and precancerous lesions were analyzed. HPV + infection, high-grade squamous intraepithelial lesion-positive (CINII +) in cervical high-grade intraepithelial neoplasia, and early cervical cancer diagnosis rates were 12.45, 1.09, and 95.41%, respectively. The potential risk factors for HPV were education ≤ high school [odds ratio (OR) = 1.279 (1.129–1.449), P < 0.001], age at initial sexual activity ≤ 19 years [OR = 1.517 (1.080–2.129), P = 0.016], sexual partners > 1 [OR = 1.310 (1.044–1.644), P = 0.020], ASCUS and above [OR = 11.891 (10.105–13.993), P < 0.001], non-condom contraception [OR = 1.255 (1.059–1.487), P = 0.009], and HSIL and above [OR = 1.541 (1.430–1.662), P < 0.001]. Compared with women aged 56–65 and 35–45 years [OR = 0.810 (0.690–0.950), P = 0.010] the HPV infection rate was significantly lower in those aged 46–55 years [OR = 0.79 (0.683–0.915), P = 0.002]. Furthermore, ≤ high school age [OR = 1.577 (1.042–2.387), P = 0.031], not breastfeeding [OR = 1.763 (1.109–2.804), P = 0.017], ASCUS and above [OR = 42.396 (28.042–64.098), P < 0.001] were potential risk factors for cervical cancer and precancerous lesions. In women with HPV infection, ≤ high school education level, initial sexual activity at ≤ 19 years of age, number of sexual partners > 1, ASCUS and above, non-condom contraception, HSIL and above were risk factors for HPV infection. Compared with women aged 56–65 years, those aged 35–45 and 46–55 years had significantly lower HPV infection rates, and high school age and below, non-breastfeeding, and ASCUS and above were all potential risk factors for cervical cancer and precancerous lesions.
Collapse
Affiliation(s)
- Di Yang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Zhang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoli Cui
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunyan Wang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Chunyan Wang,
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
- Haozhe Piao,
| |
Collapse
|
16
|
Lagström S, Løvestad AH, Umu SU, Ambur OH, Nygård M, Rounge TB, Christiansen IK. HPV16 and HPV18 type-specific APOBEC3 and integration profiles in different diagnostic categories of cervical samples. Tumour Virus Res 2021; 12:200221. [PMID: 34175494 PMCID: PMC8287217 DOI: 10.1016/j.tvr.2021.200221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Human papillomavirus (HPV) 16 and 18 are the most predominant types in cervical cancer. Only a small fraction of HPV infections progress to cancer, indicating that additional factors and genomic events contribute to the carcinogenesis, such as minor nucleotide variation caused by APOBEC3 and chromosomal integration. We analysed intra-host minor nucleotide variants (MNVs) and integration in HPV16 and HPV18 positive cervical samples with different morphology. Samples were sequenced using an HPV whole genome sequencing protocol TaME-seq. A total of 80 HPV16 and 51 HPV18 positive samples passed the sequencing depth criteria of 300× reads, showing the following distribution: non-progressive disease (HPV16 n = 21, HPV18 n = 12); cervical intraepithelial neoplasia (CIN) grade 2 (HPV16 n = 27, HPV18 n = 9); CIN3/adenocarcinoma in situ (AIS) (HPV16 n = 27, HPV18 n = 30); cervical cancer (HPV16 n = 5). Similar numbers of MNVs in HPV16 and HPV18 samples were observed for most viral genes, with the exception of HPV18 E4 with higher numbers across clinical categories. APOBEC3 signatures were observed in HPV16 lesions, while similar mutation patterns were not detected for HPV18. The proportion of samples with integration was 13% for HPV16 and 59% for HPV18 positive samples, with a noticeable portion located within or close to cancer-related genes.
Collapse
Affiliation(s)
- Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Sinan Uğur Umu
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Ole Herman Ambur
- Faculty of Health Sciences, OsloMet, Oslo Metropolitan University, Oslo, Norway
| | - Mari Nygård
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway; Department of Informatics, University of Oslo, Oslo, Norway.
| | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog, Norway.
| |
Collapse
|
17
|
Warburton A, Markowitz TE, Katz JP, Pipas JM, McBride AA. Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. NPJ Genom Med 2021; 6:101. [PMID: 34848725 PMCID: PMC8632991 DOI: 10.1038/s41525-021-00264-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Oncogenic human papillomavirus (HPV) genomes are often integrated into host chromosomes in HPV-associated cancers. HPV genomes are integrated either as a single copy or as tandem repeats of viral DNA interspersed with, or without, host DNA. Integration occurs frequently in common fragile sites susceptible to tandem repeat formation and the flanking or interspersed host DNA often contains transcriptional enhancer elements. When co-amplified with the viral genome, these enhancers can form super-enhancer-like elements that drive high viral oncogene expression. Here we compiled highly curated datasets of HPV integration sites in cervical (CESC) and head and neck squamous cell carcinoma (HNSCC) cancers, and assessed the number of breakpoints, viral transcriptional activity, and host genome copy number at each insertion site. Tumors frequently contained multiple distinct HPV integration sites but often only one “driver” site that expressed viral RNA. As common fragile sites and active enhancer elements are cell-type-specific, we mapped these regions in cervical cell lines using FANCD2 and Brd4/H3K27ac ChIP-seq, respectively. Large enhancer clusters, or super-enhancers, were also defined using the Brd4/H3K27ac ChIP-seq dataset. HPV integration breakpoints were enriched at both FANCD2-associated fragile sites and enhancer-rich regions, and frequently showed adjacent focal DNA amplification in CESC samples. We identified recurrent integration “hotspots” that were enriched for super-enhancers, some of which function as regulatory hubs for cell-identity genes. We propose that during persistent infection, extrachromosomal HPV minichromosomes associate with these transcriptional epicenters and accidental integration could promote viral oncogene expression and carcinogenesis.
Collapse
Affiliation(s)
- Alix Warburton
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joshua P Katz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC3209, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Genomic alterations caused by HPV integration in a cohort of Chinese endocervical adenocarcinomas. Cancer Gene Ther 2021; 28:1353-1364. [PMID: 33398034 PMCID: PMC8636260 DOI: 10.1038/s41417-020-00283-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
The association between human papillomavirus (HPV) integration and relevant genomic changes in uterine cervical adenocarcinoma is poorly understood. This study is to depict the genomic mutational landscape in a cohort of 20 patients. HPV+ and HPV− groups were defined as patients with and without HPV integration in the host genome. The genetic changes between these two groups were described and compared by whole-genome sequencing (WGS) and whole-exome sequencing (WES). WGS identified 2916 copy number variations and 743 structural variations. WES identified 6113 somatic mutations, with a mutational burden of 2.4 mutations/Mb. Six genes were predicted as driver genes: PIK3CA, KRAS, TRAPPC12, NDN, GOLGA6L4 and BAIAP3. PIK3CA, NDN, GOLGA6L4, and BAIAP3 were recognized as significantly mutated genes (SMGs). HPV was detected in 95% (19/20) of patients with cervical adenocarcinoma, 7 of whom (36.8%) had HPV integration (HPV+ group). In total, 1036 genes with somatic mutations were confirmed in the HPV+ group, while 289 genes with somatic mutations were confirmed in the group without HPV integration (HPV− group); only 2.1% were shared between the two groups. In the HPV+ group, GOLGA6L4 and BAIAP3 were confirmed as SMGs, while PIK3CA, NDN, KRAS, FUT1, and GOLGA6L64 were identified in the HPV− group. ZDHHC3, PKD1P1, and TGIF2 showed copy number amplifications after HPV integration. In addition, the HPV+ group had significantly more neoantigens. HPV integration rather than HPV infection results in different genomic changes in cervical adenocarcinoma.
Collapse
|
19
|
Sastre-Garau X, Harlé A. Pathology of HPV-Associated Head and Neck Carcinomas: Recent Data and Perspectives for the Development of Specific Tumor Markers. Front Oncol 2020; 10:528957. [PMID: 33312940 PMCID: PMC7701329 DOI: 10.3389/fonc.2020.528957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
A significant subset of carcinomas developed in the head and neck (H&NCs) are associated with specific human papillomaviruses (HPV) genotypes. In particular, 40–60% of oropharyngeal carcinoma cases are linked to HPV. Epidemiological studies have demonstrated that HPV oral infections are predominantly sexually transmitted and are more frequent among men (10–18%) than women (3.6–8.8%). Although there is a large diversity of HPV genotypes associated with H&NCs, HPV16 lineage represents 83% of the reported cases. The prognostic value of HPV as a biological parameter is well recognized. However, the use of HPV DNA as a diagnostic and/or predictive marker is not fully developed. Recent data reporting the physical state of the HPV genome in tumors have shown that HPV DNA integration into the tumor cell genome could lead to the alteration of cellular genes implicated in oncogenesis. Most importantly, HPV DNA corresponds to a tumor marker that can be detected in the blood of patients. Profile of the HPV DNA molecular patterns in tumor cells using New Genome Sequencing-based technologies, allows the identification of highly specific tumor markers valuable for the development of innovative diagnostic and therapeutic approaches. This review will summarize recent epidemiological data concerning HPV-associated H&NCs, the genomic characterization of these tumors, including the presence of HPV DNA in tumor cells, and will propose perspectives for developing improved care of patients with HPV-associated H&NCs, based on the use of viral sequences as personalized tumor markers and, over the longer term, as a therapeutic target.
Collapse
Affiliation(s)
- Xavier Sastre-Garau
- Service de Pathologie, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Alexandre Harlé
- Université de Lorraine, CNRS UMR7039 CRAN, service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
20
|
Tian R, Zhou P, Li M, Tan J, Cui Z, Xu W, Wei J, Zhu J, Jin Z, Cao C, Fan W, Xie W, Huang Z, Xie H, You Z, Niu G, Wu C, Guo X, Weng X, Tian X, Yu F, Yu Z, Liang J, Hu Z. DeepHPV: a deep learning model to predict human papillomavirus integration sites. Brief Bioinform 2020; 22:5924410. [PMID: 33059369 DOI: 10.1093/bib/bbaa242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/09/2023] Open
Abstract
Human papillomavirus (HPV) integrating into human genome is the main cause of cervical carcinogenesis. HPV integration selection preference shows strong dependence on local genomic environment. Due to this theory, it is possible to predict HPV integration sites. However, a published bioinformatic tool is not available to date. Thus, we developed an attention-based deep learning model DeepHPV to predict HPV integration sites by learning environment features automatically. In total, 3608 known HPV integration sites were applied to train the model, and 584 reviewed HPV integration sites were used as the testing dataset. DeepHPV showed an area under the receiver-operating characteristic (AUROC) of 0.6336 and an area under the precision recall (AUPR) of 0.5670. Adding RepeatMasker and TCGA Pan Cancer peaks improved the model performance to 0.8464 and 0.8501 in AUROC and 0.7985 and 0.8106 in AUPR, respectively. Next, we tested these trained models on independent database VISDB and found the model adding TCGA Pan Cancer performed better (AUROC: 0.7175, AUPR: 0.6284) than the model adding RepeatMasker peaks (AUROC: 0.6102, AUPR: 0.5577). Moreover, we introduced attention mechanism in DeepHPV and enriched the transcription factor binding sites including BHLHA15, CHR, COUP-TFII, DMRTA2, E2A, HIC1, INR, NPAS, Nr5a2, RARa, SCL, Snail1, Sox10, Sox3, Sox4, Sox6, STAT6, Tbet, Tbx5, TEAD, Tgif2, ZNF189, ZNF416 near attention intensive sites. Together, DeepHPV is a robust and explainable deep learning model, providing new insights into HPV integration preference and mechanism. Availability: DeepHPV is available as an open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepHPV.git, Contact: huzheng1998@163.com, liangjiuxing@m.scnu.edu.cn, lizheyzy@163.com.
Collapse
Affiliation(s)
- Rui Tian
- Translational Medicine of the First Affiliated Hospital, Sun Yat-sen University
| | - Ping Zhou
- Dongguan Maternal and Child Health Care Hospital
| | - Mengyuan Li
- Department of Obstetrics and Gynecology at the First Affiliated Hospital, Sun Yat-sen University
| | - Jinfeng Tan
- First Affiliated Hospital, Sun Yat-sen University
| | - Zifeng Cui
- First Affiliated Hospital, Sun Yat-sen University
| | - Wei Xu
- Department of Obstetrics and Gynecology at the First Affiliated Hospital, Sun Yat-sen University
| | - Jingyue Wei
- Department of Obstetrics and Gynecology at the First Affiliated Hospital, Sun Yat-sen University
| | - Jingjing Zhu
- Department of Obstetrics and Gynecology of the First Affiliated Hospital, Sun Yat-sen University
| | - Zhuang Jin
- First Affiliated Hospital, Sun Yat-sen University
| | - Chen Cao
- Central Hospital of Wuhan, China
| | - Weiwen Fan
- College of Medicine at the Sun Yat-sen University
| | - Weiling Xie
- First Affiliated Hospital, Sun Yat-sen University
| | | | | | - Zeshan You
- First Affiliated Hospital, Sun Yat-sen University
| | - Gang Niu
- Department of Obstetrics and Gynecology of the First Affiliated Hospital, Sun Yat-sen University
| | - Canbiao Wu
- Institute for Brain Research and Rehabilitation at the South China Normal University
| | - Xiaofang Guo
- Department of Medical Oncology of the Eastern Hospital at the First Affiliated Hospital, Sun Yat-sen University
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation at the South China Normal University
| | | | - Fubing Yu
- Dongguan Maternal and Child Health Care Hospital
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center
| | - Jiuxing Liang
- Institute for Brain Research and Rehabilitation at the South China Normal University
| | - Zheng Hu
- Gynecological Oncology of the First Affiliated Hospital, Precision Medicine Institute, Sun Yat-sen University
| |
Collapse
|
21
|
Identification of Specific Tumor Markers in Vulvar Carcinoma Through Extensive Human Papillomavirus DNA Characterization Using Next Generation Sequencing Method. J Low Genit Tract Dis 2020; 24:53-60. [PMID: 31860576 DOI: 10.1097/lgt.0000000000000498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES A subset of vulvar carcinomas (VC) are associated with human papillomavirus (HPV) DNA. This trait can be used to identify tumor markers for patient's follow-up. A large diversity of HPV prevalence in VC has been reported, but no data are available concerning the insertional HPV status in this tumor type. Therefore, we have used an innovative next generation sequencing (NGS)-based CaptHPV method able to provide an extensive characterization of HPV DNA in tumors. MATERIAL AND METHODS Tumor tissue specimens from 55 patients with VC were analyzed using p16 immunohistochemistry, in situ hybridization, polymerase chain reaction, and CaptHPV-NGS assays. RESULTS Our analyses showed that 8 (14.5%) of 55 cases were associated with HPV 16 DNA. No other HPV genotypes were identified. The HPV genome was in a free episomal state only in one case and both episomal and integrated into the tumor cell genome in 7. There was a single insertion in 5 cases and multiple sites, scattered at different chromosomal loci in two. ISH data suggest that some of these might reflect tumor heterogeneity. Viral integration targeted cellular genes among which were TP63, CCDC148, LOC100133091, PKP1, and POLA2. Viral integration at the PKP1 locus was associated with partial gene deletion, and no PKP1 protein was detected in tumor tissue. CONCLUSIONS Using the NGS-based innovative capture-HPV approach, we established a cartography of HPV 16 DNA in 8 VC cases and identified novel genes targeted by integration that may be used as specific tumor markers. In addition, we established a rationale strategy for optimal characterization of HPV status in VC.
Collapse
|
22
|
Brant AC, Menezes AN, Felix SP, Almeida LM, Moreira MAM. Preferential expression of a HPV genotype in invasive cervical carcinomas infected by multiple genotypes. Genomics 2020; 112:2942-2948. [PMID: 32437850 DOI: 10.1016/j.ygeno.2020.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
Multiple infections by HPV genotypes are frequently detected in HPV+ cervical lesions but the interaction between each viral genotype during carcinogenesis is poorly understood. Here we carried out a comprehensive study to characterize the multiple HPV expression and integration by RNA-seq analyses of 19 invasive cervical carcinomas coinfected by several HPV genotypes. Analysis of tumor DNA by a hybridization assay indicated multiple infections ranging from 2 to 6 different HPV genotypes. RNA-seq analysis showed that a single HPV genotype was preferentially expressed. Finally, the search for HPV/human chimeric transcripts indicated integration from preferentially expressed genotypes. In conclusion, the present study indicated that, in invasive cervical carcinomas infected by multiple HPV genotypes, one HPV was preferentially expressed, supporting the hypothesis that a single HPV genotype was associated with cancer development.
Collapse
Affiliation(s)
- A C Brant
- Genetics Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil; Post-Graduate Program in Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - A N Menezes
- Cancer Genetics and Evolution Laboratory, Cancer Research UK, Institute of Genetics & Molecular Medicine, The University of Edinburgh, UK
| | - S P Felix
- Genetics Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - L M Almeida
- Department of Population Research, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - M A M Moreira
- Genetics Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Silva NNT, Santos ACS, Nogueira VM, Carneiro CM, Lima AA. 3'UTR polymorphism of Thymidylate Synthase gene increased the risk of persistence of pre-neoplastic cervical lesions. BMC Cancer 2020; 20:323. [PMID: 32295543 PMCID: PMC7161242 DOI: 10.1186/s12885-020-06811-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cervical cancer is caused by high-risk Human Papillomavirus (hr-HPV) infection associated with cofactors that has been analyzed as predictors of the remission or persistence of cytological abnormalities remission or persistence. These cofactors can be either environmental, epigenetic, or genetic. Polymorphism in genes of enzymes that act on one-carbon metabolism alter their activity and also may be associated with cervical carcinogenesis because they affect DNA synthesis and repair, and gene expression. Therefore, this study aimed to analyze the risk of persistence of pre-neoplastic cervical lesions according to genetic polymorphisms involved in one-carbon metabolism. METHODS Our sample consisted of 106 women, divided into two groups - Remission (n = 60), i.e., with the presence of pre-neoplastic lesions at first meeting (T1) and normal cytology after 6 months of follow-up (T2), and Persistence (n = 46), i.e., with the presence of pre-neoplastic lesions at T1 and T2. We obtained cervical samples for cytological analysis (T1 and T2), HPV detection (T1), and evaluation of polymorphism C667T of Methylenetetrahydrofolate Reductase (MTHFR C677T), A2756G of Methionine Synthase (MS A2756G), A66G of Methionine Synthase Reductase (MTRR A66G), double or triple 28 bp tandem repeat in 5'-untranslated enhanced region of Thymidylate Synthase (TSER), and 6 bp deletion at nucleotide 1494 in TS 3'-untranslated region (TS3'UTR). To analyze all genetic polymorphisms simultaneously, we calculated the Genetic Risk Score (GRS). RESULTS We observed no differences between the Remission and Persistence groups regarding the GRS. Also, there were no differences in the genotypic and allelic distribution of MTHFR C677T and MS A2756G polymorphisms. However, the risk of persistence was higher among women with the heterozygote genotype - ins/del [OR (IC95%): 3.22 (1.19-8.69), p = 0.021], or the polymorphic genotype - del/del [OR (IC95%): 6.50 (1.71-24.70), p = 0.006] of TS3'UTR. CONCLUSIONS The presence of the TS3'UTR polymorphism increased the risk of persistence of cervical abnormalities. This genetic variant could be a potential marker of cervical carcinogenesis and therefore assist the follow-up of women with persistent pre-neoplastic cervical lesions.
Collapse
Affiliation(s)
- Nayara Nascimento Toledo Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| | - Ana Carolina Silva Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Verlândia Mendes Nogueira
- Centro Estadual de Atenção Especializada (CEAE) de Itabirito, Rua Antônio Carlos, 202 - Praia, Itabirito, Minas Gerais, 35450-000, Brazil
| | - Cláudia Martins Carneiro
- Programa de Pós-Graduação em Ciências Biológicas e Biotecnologia, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Angélica Alves Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
24
|
Van Arsdale A, Patterson NE, Maggi EC, Agoni L, Van Doorslaer K, Harmon B, Nevadunsky N, Kuo DY, Einstein MH, Lenz J, Montagna C. Insertional oncogenesis by HPV70 revealed by multiple genomic analyses in a clinically HPV-negative cervical cancer. Genes Chromosomes Cancer 2020; 59:84-95. [PMID: 31407403 PMCID: PMC6916423 DOI: 10.1002/gcc.22799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Cervical carcinogenesis, the second leading cause of cancer death in women worldwide, is caused by multiple types of human papillomaviruses (HPVs). To investigate a possible role for HPV in a cervical carcinoma that was HPV-negative by PCR testing, we performed HPV DNA hybridization capture plus massively parallel sequencing. This detected a subgenomic, URR-E6-E7-E1 segment of HPV70 DNA, a type not generally associated with cervical cancer, inserted in an intron of the B-cell lymphoma/leukemia 11B (BCL11B) gene in the human genome. Long range DNA sequencing confirmed the virus and flanking BCL11B DNA structures including both insertion junctions. Global transcriptomic analysis detected multiple, alternatively spliced, HPV70-BCL11B, fusion transcripts with fused open reading frames. The insertion and fusion transcripts were present in an intraepithelial precursor phase of tumorigenesis. These results suggest oncogenicity of HPV70, identify novel BCL11B variants with potential oncogenic implications, and underscore the advantages of thorough genomic analyses to elucidate insights into HPV-associated tumorigenesis.
Collapse
Affiliation(s)
- Anne Van Arsdale
- Department of Obstetrics & Gynecology and Women's HealthAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Nicole E. Patterson
- Department of GeneticsAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Elaine C. Maggi
- Department of GeneticsAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Lorenzo Agoni
- Department of Women's and Children's HealthObstetrics & Gynecology Unit, Fondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical SciencesCollege of Agriculture and Life Sciences BIO5 Institute University of ArizonaTusconArizonaUSA
| | - Bryan Harmon
- Department of PathologyAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Nicole Nevadunsky
- Department of Obstetrics & Gynecology and Women's HealthAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Dennis Y.S. Kuo
- Department of Obstetrics & Gynecology and Women's HealthAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Mark H. Einstein
- Department of Obstetrics, Gynecology, and Women's HealthRutgers New Jersey Medical SchoolNewarkNew Jersey
| | - Jack Lenz
- Department of GeneticsAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Cristina Montagna
- Department of GeneticsAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
- Department of PathologyAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| |
Collapse
|
25
|
Joo J, Omae Y, Hitomi Y, Park B, Shin HJ, Yoon KA, Sawai H, Tsuiji M, Hayashi T, Kong SY, Tokunaga K, Kim JY. The association of integration patterns of human papilloma virus and single nucleotide polymorphisms on immune- or DNA repair-related genes in cervical cancer patients. Sci Rep 2019; 9:13132. [PMID: 31511581 PMCID: PMC6739467 DOI: 10.1038/s41598-019-49523-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/24/2019] [Indexed: 11/24/2022] Open
Abstract
The present study investigated the association between single nucleotide polymorphisms (SNPs) in immune- or DNA repair-related genes and the integration pattern of human papillomavirus (HPV), a promising prognostic marker in cervical cancer. The HPV integration patterns of cervical cancer patients were determined by polymerase chain reaction and in situ hybridization, and categorized as episomal (group A), single-copy or multi-copy tandem repetition integrated (group B), and undetectable HPV types (group C). After sample and SNP quality control, 166,505 SNPs in 161 samples (38, 111, and 12 patients in groups A, B, and C, respectively) were examined. None of the SNPs reached genome-wide significance, and several candidate SNPs for future study were selected, including rs10999435 on chromosome 10q22, rs1322054 on chromosome 9q32-33, and rs10902171 on chromosome 11p15. Luciferase assay identified rs1322054 as the primary functional variant to regulate gene expression in immune cell. Further studies are needed to determine the genetic background of different integration patterns of HPV in cervical cancer patients.
Collapse
Affiliation(s)
- Jungnam Joo
- Biometrics Research Branch, National Cancer Center, Goyang, Korea
| | - Yosuke Omae
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Boram Park
- Biometrics Research Branch, National Cancer Center, Goyang, Korea
| | - Hye-Jin Shin
- Particle Therapy Research Branch, National Cancer Center, Goyang, Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
- Center for Breast Cancer, National Cancer Center, Goyang, Korea
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Tomonori Hayashi
- Department of Radiobiology and Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Sun-Young Kong
- Translational Research Branch, National Cancer Center, Goyang, Korea
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Joo-Young Kim
- Particle Therapy Research Branch, National Cancer Center, Goyang, Korea.
| |
Collapse
|
26
|
Silva NNT, Sabino ADP, Tafuri A, Lima AA. Lack of association between methylenetetrahydrofolate reductase C677T polymorphism, HPV infection and cervical intraepithelial neoplasia in Brazilian women. BMC MEDICAL GENETICS 2019; 20:100. [PMID: 31170928 PMCID: PMC6554906 DOI: 10.1186/s12881-019-0831-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/21/2019] [Indexed: 12/04/2022]
Abstract
BACKGROUND Cervical cancer has high prevalence and mortality rates in worldwide female population. Persistent infection by high-risk Human Papillomavirus (hr-HPV) is the main cause of this cancer. However, many environmental, genetical, and epigenetical cofactors can modulate viral infection and cervical carcinogenesis. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is a genetic factor that has been associated with many pathologies, including cancer. Nevertheless, studies with cervical cancer presented controversial results, and varied according to ethnicity. Thus, the aim of this study was to determine association between MTHFR C677T polymorphism, Human Papillomavirus (HPV) infection and cervical cancer. METHODS A case-control study was performed with 150 histological cervical samples. Case group were divided in Cervical Intraepithelial Neoplasia (CIN) grade I (n = 30), CIN II (n = 30), CIN III (n = 30), and Squamous Cervical Carcinoma (SCC) (n = 30). Control group was composed by 30 samples without lesion, presenting cervicitis. HPV detection was performed by conventional Polymerase Chain Reaction (PCR) with SPF primers set, and by real-time PCR specific for HPV 16 and hr-HPV. MTHFR C677T polymorphism was analyzed by PCR followed by Restriction Fragment Length Polymorphism (RFLP). RESULTS Frequency of MTHFR CC genotype was 72.7% (n = 109), CT 23.3% (n = 35) and TT 4.0% (n = 6). Polymorphic T allele frequency was 15.7%. No statistically significant association was observed between MTHFR C677T polymorphism and presence of pre-neoplastic or neoplastic cervical lesions. Similar frequencies of T allele was observed in control (23.3%) and cases (13.3%) groups (p = 0.174). In addition, there was no statistically significant association between MTHFR C677T polymorphism and viral infection, even considering hr-HPV or HPV 16 positivity. CONCLUSION MTHFR C677T polymorphism was not associated with cervical cancer and HPV infection.
Collapse
Affiliation(s)
- Nayara Nascimento Toledo Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000 Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, President Antônio Carlos Avenue, 6627, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Alexandre Tafuri
- Laboratório Tafuri, São Paulo Street, 893, Belo Horizonte, Minas Gerais 30170-131 Brazil
| | - Angélica Alves Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Análises Clínicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000 Brazil
| |
Collapse
|
27
|
Arfi A, Hequet D, Bataillon G, Tran-Perennou C, Farkhondeh F, Sastre-Garau X, Fourchotte V, Rouzier R, Laas E, Pouget N, Vincent-Salomon A, Jeannot E. HPV DNA integration site as proof of the origin of ovarian metastasis from endocervical adenocarcinoma: three case reports. BMC Cancer 2019; 19:375. [PMID: 31014281 PMCID: PMC6480742 DOI: 10.1186/s12885-019-5582-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/05/2019] [Indexed: 11/29/2022] Open
Abstract
Background Most endocervical adenocarcinomas are human papillomavirus (HPV)-related cancers associated with p16 immunostaining. Ovarian metastasis from cervical cancer is a rare phenomenon, the mechanism of dissemination remains unclear. The diagnosis of metastasis may be difficult to establish when the ovarian neoplasm presents features consistent with primary tumor. Immunohistochemical expression of p16 in ovarian tumors can guide the diagnosis of metastasis from HPV-related cervical cancer, but p16 positivity is nonspecific. Identical HPV genotype in the paired endocervical and ovarian tumors is a better marker for cervical origin, which may also be confirmed by identical HPV integration site. Case presentation Two women presented with HPV18 cervical adenocarcinoma. No signs of disease were visible on MRI after treatment. After several years of follow-up, mucinous ovarian tumors were discovered in both patients. Molecular analyses showed that the ovarian lesions were HPV18-positive; indicating a primary cervical origin. A third woman was diagnosed with grade 1 ovarian endometrioid carcinoma with no peritoneal carcinomatosis. Final histological examination and HPV genotyping revealed HPV18-related in situ endometrioid adenocarcinoma in the endocervix and HPV18-related invasive endometrioid adenocarcinoma in the endometrium and both ovaries. Additional molecular analyses performed in two patients identified the same HPV integration sites in both the ovarian and cervical tumors, confirming that the ovarian mass was a metastasis from the cervical adenocarcinoma. Conclusion We report three new cases of ovarian neoplasia in which the diagnosis of metastasis from cervical cancer was supported by the same HPV genotype and the same integration site in the paired cervical and ovarian tumors. To our knowledge, this is the first report of molecular evidence of the cervical origin of an ovarian metastasis. HPV screening should be performed in ovarian tumors for all patients with history of cervical neoplasia.
Collapse
Affiliation(s)
- Alexandra Arfi
- Department of Surgery, Institut Curie, 92210, St Cloud, France
| | - Delphine Hequet
- Department of Surgery, Institut Curie, 92210, St Cloud, France.,Institut Curie, Inserm U900 - Bioinformatics, biostatistics, epidemiology and computational systems. Cancer biology, 35, rue Dailly, 92210, Saint-Cloud, France
| | | | | | | | - Xavier Sastre-Garau
- Department of Pathology, Institut de Cancérologie de Lorraine, 54519, Vandoeuvre-Lès-Nancy, France
| | | | - Roman Rouzier
- Department of Surgery, Institut Curie, 92210, St Cloud, France.,Institut Curie, Inserm U900 - Bioinformatics, biostatistics, epidemiology and computational systems. Cancer biology, 35, rue Dailly, 92210, Saint-Cloud, France
| | - Enora Laas
- Department of Surgery, Institut Curie, 92210, St Cloud, France
| | - Nicolas Pouget
- Department of Surgery, Institut Curie, 92210, St Cloud, France
| | | | | |
Collapse
|
28
|
Schrama D, Sarosi EM, Adam C, Ritter C, Kaemmerer U, Klopocki E, König EM, Utikal J, Becker JC, Houben R. Characterization of six Merkel cell polyomavirus-positive Merkel cell carcinoma cell lines: Integration pattern suggest that large T antigen truncating events occur before or during integration. Int J Cancer 2019; 145:1020-1032. [PMID: 30873613 DOI: 10.1002/ijc.32280] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Merkel cell carcinoma (MCC), an aggressive neuroendocrine skin tumor, is a polyomavirus-induced human cancer. To study the causal relationship of MCC carcinogenesis with the integrated Merkel cell polyomavirus (MCPyV) in detail, well-characterized MCC cell lines are needed. Consequently, in the current study, we established and characterized six MCPyV-positive MCC cell lines. Microarray-based comparative genomic hybridization revealed a stable genome carrying only a limited number of chromosomal gains and deletions. All cell lines expressed MCC markers Keratin-20 and neuron-specific enolase as well as truncated MCPyV-encoded large T antigen (LT). For five cell lines, we were able to identify the MCPyV-integration sites in introns of different genes. The LT-truncating stop codon mutations and integration sites were affirmed in the respective clinical patient samples. Inverse PCR suggested that three of the cell lines contained MCPyV genomes as concatemers. This notion was confirmed for the two cell lines with known integration sites. Importantly, our observation of distinct stop codon mutations in cell lines with concatemeric MCPyV integration indicates that these LT-truncating mutations occur before integration. In summary, we provide the detailed characterization of six MCPyV-positive MCC cell lines, which are likely to serve as valuable tools in future MCC research.
Collapse
Affiliation(s)
- David Schrama
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Eva-Maria Sarosi
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Adam
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Cathrin Ritter
- Department of Translational Skin Cancer Research (tscr), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK/DKFZ), Heidelberg, Germany
| | - Ulrike Kaemmerer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Eva Klopocki
- Institute for Human Genetics, University of Würzburg, Würzburg, Germany
| | - Eva-Maria König
- Institute for Human Genetics, University of Würzburg, Würzburg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research (tscr), University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK/DKFZ), Heidelberg, Germany
| | - Roland Houben
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Harlé A, Guillet J, Thomas J, Demange J, Dolivet G, Peiffert D, Leroux A, Sastre-Garau X. HPV insertional pattern as a personalized tumor marker for the optimized tumor diagnosis and follow-up of patients with HPV-associated carcinomas: a case report. BMC Cancer 2019; 19:277. [PMID: 30922253 PMCID: PMC6437879 DOI: 10.1186/s12885-019-5447-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/07/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In clinical oncology, only a few applications have been developed using HPV as a personalized tumor marker, a lack most probably related to the limited information obtained by the classical Polymerase Chain Reaction (PCR) approach. To overcome this limitation, we have recently developed the capture-based Next-Generation Sequencing (NGS) "CaptHPV" assay, designed to provide an extensive and comprehensive molecular characterization of HPV DNA sequences associated with neoplasias, ie the sequence of the viral genome (245 genotypes), its physical state, viral load, integration site and genomic alterations at integration locus. These data correspond to highly specific tumor markers that can be used to improve diagnosis and patient's follow-up. CASE PRESENTATION We report here a case that is a straightforward and practical illustration of the power of the CaptHPV method. A patient developed successively a carcinoma of the anal canal and of the tongue. The two tumors were squamous cell carcinoma, found associated with HPV16 using PCR. In order to document a possible metastasis to the tongue from the anal cancer, we performed CaptHPV analysis on the two tumors. The analysis of the anal carcinoma found 55 viral/human hybrid reads allowing the identification of the HPV16 DNA integration in the 4q25 chromosomal band locus with a 178,808 bp deletion in the cell genome. Molecular analysis of the tongue tumor disclosed 6110 reads of HPV16, with a viral pattern strictly identical to that of the anal tumor. A total of 131 hybrid reads between HPV16 and the cell genome were found, corresponding exactly to the same locus of integration of viral DNA at the 4q25 site. The 178,808 bp genomic deletion was also found in the lingual tumor. The exact identity of HPV insertional signatures in the two tumors, demonstrates unambiguously that the tongue tumor derived from the anal cancer whereas neither histological immunophenotyping nor classical viral analysis using PCR could allow a definitive diagnosis. CONCLUSION Our observation indicates that the establishment of a detailed cartography of HPV DNA sequences in a tumor specimen provides crucial information for the design of specific biomarkers that can be used for diagnostic, prognostic or predictive purposes.
Collapse
Affiliation(s)
- Alexandre Harlé
- Université de Lorraine, Nancy, France
- CNRS, UMR, 7039 CRAN, Nancy, France
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Julie Guillet
- Université de Lorraine, Nancy, France
- CNRS, UMR, 7039 CRAN, Nancy, France
- Département de chirurgie oncologique, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jacques Thomas
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jessica Demange
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Gilles Dolivet
- CNRS, UMR, 7039 CRAN, Nancy, France
- Département de chirurgie oncologique, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Didier Peiffert
- Université de Lorraine, Nancy, France
- Département de radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Agnès Leroux
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Xavier Sastre-Garau
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
30
|
Genome-wide profiling of human papillomavirus DNA integration in liquid-based cytology specimens from a Gabonese female population using HPV capture technology. Sci Rep 2019; 9:1504. [PMID: 30728408 PMCID: PMC6365579 DOI: 10.1038/s41598-018-37871-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/10/2018] [Indexed: 01/02/2023] Open
Abstract
Human papillomavirus (HPV) is recognised as the cause of precancerous and cancerous cervical lesions. Furthermore, in high-grade lesions, HPV is frequently integrated in the host cell genome and associated with the partial or complete loss of the E1 and E2 genes, which regulate the activity of viral oncoproteins E6 and E7. In this study, using a double-capture system followed by high-throughput sequencing, we determined the HPV integration status present in liquid-based cervical smears in an urban Gabonese population. The main inclusion criteria were based on cytological grade and the detection of the HPV16 genotype using molecular assays. The rate of HPV integration in the host genome varied with cytological grade: 85.7% (6/7), 71.4% (5/7), 66.7% (2/3) 60% (3/5) and 30.8% (4/13) for carcinomas, HSIL, ASCH, LSIL and ASCUS, respectively. For high cytological grades (carcinomas and HSIL), genotypes HPV16 and 18 represented 92.9% of the samples (13/14). The integrated form of HPV16 genotype was mainly found in high-grade lesions in 71.4% of samples regardless of cytological grade. Minority genotypes (HPV33, 51, 58 and 59) were found in LSIL samples, except HPV59, which was identified in one HSIL sample. Among all the HPV genotypes identified after double capture, 10 genotypes (HPV30, 35, 39, 44, 45, 53, 56, 59, 74 and 82) were detected only in episomal form. Our study revealed that the degree of HPV integration varies with cervical cytological grade. The integration event might be a potential clinical prognostic biomarker for the prediction of the progression of neoplastic lesions.
Collapse
|
31
|
Lagström S, Umu SU, Lepistö M, Ellonen P, Meisal R, Christiansen IK, Ambur OH, Rounge TB. TaME-seq: An efficient sequencing approach for characterisation of HPV genomic variability and chromosomal integration. Sci Rep 2019; 9:524. [PMID: 30679491 PMCID: PMC6345795 DOI: 10.1038/s41598-018-36669-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
HPV genomic variability and chromosomal integration are important in the HPV-induced carcinogenic process. To uncover these genomic events in an HPV infection, we have developed an innovative and cost-effective sequencing approach named TaME-seq (tagmentation-assisted multiplex PCR enrichment sequencing). TaME-seq combines tagmentation and multiplex PCR enrichment for simultaneous analysis of HPV variation and chromosomal integration, and it can also be adapted to other viruses. For method validation, cell lines (n = 4), plasmids (n = 3), and HPV16, 18, 31, 33 and 45 positive clinical samples (n = 21) were analysed. Our results showed deep HPV genome-wide sequencing coverage. Chromosomal integration breakpoints and large deletions were identified in HPV positive cell lines and in one clinical sample. HPV genomic variability was observed in all samples allowing identification of low frequency variants. In contrast to other approaches, TaME-seq proved to be highly efficient in HPV target enrichment, leading to reduced sequencing costs. Comprehensive studies on HPV intra-host variability generated during a persistent infection will improve our understanding of viral carcinogenesis. Efficient identification of both HPV variability and integration sites will be important for the study of HPV evolution and adaptability and may be an important tool for use in cervical cancer diagnostics.
Collapse
Affiliation(s)
- Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway.,Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Sinan Uğur Umu
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Maija Lepistö
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Roger Meisal
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway.,Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and Institute of Clinical Medicine, University of, Oslo, Norway
| | - Ole Herman Ambur
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
| |
Collapse
|
32
|
Chen H, Wang H, Liu J, Cheng Q, Chen X, Ye F. Association of Base Excision Repair Gene hOGG1 Ser326Cys Polymorphism with Susceptibility to Cervical Squamous Cell Carcinoma and High-Risk Human Papilloma Virus Infection in a Chinese Population. Genet Test Mol Biomarkers 2019; 23:138-144. [PMID: 30648893 DOI: 10.1089/gtmb.2018.0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIM This study investigated the association of the human 8-oxoguanine glycosylase 1 (hOGG1) Ser326Cys polymorphism with risk of cervical squamous cell carcinoma (CSCC) and high-risk human papilloma virus (HR-HPV) infection. BACKGROUND The hOGG1 Ser326Cys polymorphism is reported to be correlated with the risk of several cancers. However, there are reports that have found no significant differences in the frequency of the hOGG1 Ser326Cys between cervical carcinoma patients and controls. METHODS hOGG1 Ser326Cys was genotyped through modified allele mismatch amplification polymerase chain reaction in 1200 healthy controls, 400 cervical intraepithelial neoplasia (CIN) grade III cases, and 400 CSCC cases. RESULTS The homozygous genotype of hOGG1 Cys326Cys (GG) was associated with increased risk of CIN III (odds ratio, OR = 1.81 [1.31-2.49], p < 0.001) and CSCC (OR = 3.05 [2.2-4.20], p < 0.001). The G allele or G carrier (GG + CG) genotype was a highly-significant risk factor for CSCC (OR = 1.49 [1.14-1.97], p = 0.004). In the HR-HPV-positive group, the homozygous genotype of hOGG1 GG was associated with increased risk of CSCC (OR = 3.66 [2.02-6.62], p < 0.001) and risk of CIN III (OR = 1.82 [1.08-3.06], p = 0.024). The proportion of G allele carriers was significantly increased in CIN III (51.9%, [322/620], OR = 1.33 [1.03-1.72], p = 0.028) and CSCC (62.1% [221/356], OR = 2.02 [1.51-2.71], p < 0.001). The GG and GC genotypes were consistently identified as significant risk factors for CSCC (OR = 1.73 [1.06-2.83], p = 0.029) in the HR-HPV infected group. We further observed enrichment of the hOGG1 Ser326Cys polymorphism in the CIN III (p = 0.021) and CSCC (p < 0.001) stratified by age at first intercourse, with more significant enrichment (p = 0.036) in the HR-HPV infection group. CONCLUSIONS Our findings support associations of the hOGG1 Ser326Cys polymorphism with CSCC carcinogenesis and susceptibility to HR-HPV infection. The hOGG1 Ser326Cys polymorphism may serve as a potential genetic biomarker of susceptibility to cervical cancer and HR-HPV infection.
Collapse
Affiliation(s)
- Huaizeng Chen
- 1 Women's Reproductive Health Key Laboratory of Zhejiang Province, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, P.R. China
| | - Hanzhi Wang
- 1 Women's Reproductive Health Key Laboratory of Zhejiang Province, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, P.R. China
| | - Jia Liu
- 2 Department of Obstetrics and Gynecology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, P.R. China
| | - Qi Cheng
- 1 Women's Reproductive Health Key Laboratory of Zhejiang Province, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, P.R. China
| | - Xiaojing Chen
- 1 Women's Reproductive Health Key Laboratory of Zhejiang Province, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, P.R. China
| | - Feng Ye
- 1 Women's Reproductive Health Key Laboratory of Zhejiang Province, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
33
|
Brant AC, Menezes AN, Felix SP, de Almeida LM, Sammeth M, Moreira MAM. Characterization of HPV integration, viral gene expression and E6E7 alternative transcripts by RNA-Seq: A descriptive study in invasive cervical cancer. Genomics 2018; 111:1853-1861. [PMID: 30552977 DOI: 10.1016/j.ygeno.2018.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022]
Abstract
Scarce data are available on the expression of papillomavirus genome and the frequency of alternatively spliced E6E7 mRNAs in invasive cervical cancer. We carried out a comprehensive characterization of HPV expression by RNA-Seq analysis in 22 invasive cervical cancer with HPV16 or HPV18, characterizing the presence of integrated/episomal viral DNA, the integration sites in human genome and the proportion of alternative splicing products of E6 and E7 genes. The expression patterns suggested the presence of episomal and/or integrated viral DNA, with integration detected in most tumors, frequently occurring within human genes in HPV18+ and in intergenic regions in HPV16+ tumors. Alternative splicing of E6E7 transcripts showed E6*I as the most frequent isoform for both viral types, followed by E6*II and E6/E7 (unspliced) transcripts in HPV16+, and by E6/E7 in HPV18+ tumors. Previously described E6*VI and E6*V transcript isoforms for HPV16, and E6*X for HPV18, were rare or not detected.
Collapse
Affiliation(s)
- Ayslan C Brant
- Genetics Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil; Post-Graduate Program in Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Albert N Menezes
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Shayany P Felix
- Genetics Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Liz M de Almeida
- Department of Population Research, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.
| | - Michael Sammeth
- Department of Bioinformatics, Transcriptomics and Functional Genomics, Federal University of Rio de Janeiro (UFRJ), Brazil.
| | - Miguel A M Moreira
- Genetics Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. Cancer Med 2018; 7:5217-5236. [PMID: 30589505 PMCID: PMC6198240 DOI: 10.1002/cam4.1501] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is the third most common cancer in women worldwide, with concepts and knowledge about its prevention and treatment evolving rapidly. Human papillomavirus (HPV) has been identified as a major factor that leads to cervical cancer, although HPV infection alone cannot cause the disease. In fact, HPV-driven cancer is a small probability event because most infections are transient and could be cleared spontaneously by host immune system. With persistent HPV infection, decades are required for progression to cervical cancer. Therefore, this long time window provides golden opportunity for clinical intervention, and the fundament here is to elucidate the carcinogenic pattern and applicable targets during HPV-host interaction. In this review, we discuss the key factors that contribute to the persistence of HPV and cervical carcinogenesis, emerging new concepts and technologies for cancer interventions, and more urgently, how these concepts and technologies might lead to clinical precision medicine which could provide prediction, prevention, and early treatment for patients.
Collapse
Affiliation(s)
- Zheng Hu
- Department of Gynecological oncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd RoadYuexiu, GuangzhouGuangdongChina
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan, Hubei430030China
| | - Ding Ma
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan, Hubei430030China
| |
Collapse
|
35
|
Jeannot E, Harlé A, Holmes A, Sastre-Garau X. Nuclear factor I X is a recurrent target for HPV16 insertions in anal carcinomas. Genes Chromosomes Cancer 2018; 57:638-644. [PMID: 30264502 DOI: 10.1002/gcc.22675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/25/2022] Open
Abstract
Anal carcinomas (AC) are associated with human papillomavirus (HPV) DNA sequences, but little is known about the physical state of the viral genome in carcinoma cells. To define the integration status and gene(s) targeted by viral insertions in AC, tumor DNAs extracted from 35 tumor specimen samples in patients with HPV16-associated invasive carcinoma were analyzed using the detection of integrated papillomavirus sequences-PCR approach. The genomic status at integration sites was assessed using comparative genomic hybridization-array assay and gene expression using reverse transcription quantitative PCR (RT-qPCR). HPV16 DNA was found integrated in 25/35 (71%) cases and the integration locus could be determined at the molecular level in 19 cases (29 total integration loci). HPV DNA was inserted on different chromosomes, but 5 cases harbored viral sequences at 19p13.2, within the nuclear factor I X (NFIX) locus. Viral DNA mapped between the most distal and the two proximal alternatively expressed exons of this gene in three cases (CA21, CA04, and CA35) and upstream of this gene (663 kb and 2.3 Mb) in the others. CGH arrays showed genomic gains/amplifications at the NFIX region, associated with HPV within the gene and RT-qPCR, revealed NFIX mRNA overexpression. Other genes targeted by integration were IL20RB, RPS6KA2, MSRA1, PIP5K1B, SLX4IP, CECR1, BCAR3, ATF6, CSNK1G1, APBA2, AGK, ILF3, PVT1, TRMT1, RAD51B, FASN, CCDC57, DSG3, and ZNF563. We identified recurrent targeting of NFIX by HPV16 insertion in anal carcinomas, supporting a role for this gene in oncogenesis, as reported for non-HPV tumors.
Collapse
Affiliation(s)
- Emmanuelle Jeannot
- Department of Theranostic and Diagnostic Medicine, Institut Curie, PSL Research University, Paris, Saint-Cloud, France
| | - Alexandre Harlé
- Université de Lorraine, Nancy, France.,CNRS UMR 7039 CRAN, Vandoeuvre-Lès-Nancy, France.,Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandoeuvre-Lès-Nancy, France
| | - Allyson Holmes
- Centre National de la Recherche Scientifique UMR3244, Sorbonne Universités, Institut Curie, PSL Research University, Paris, France
| | - Xavier Sastre-Garau
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
36
|
Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med 2018; 50:1-11. [PMID: 30089796 PMCID: PMC6082854 DOI: 10.1038/s12276-018-0112-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
Next-generation sequencing technology has enabled the comprehensive detection of genomic alterations in human somatic cells, including point mutations, chromosomal rearrangements, and structural variations (SVs). Using sophisticated bioinformatics algorithms, unbiased catalogs of SVs are emerging from thousands of human cancer genomes for the first time. Via careful examination of SV breakpoints at single-nucleotide resolution as well as local DNA copy number changes, diverse patterns of genomic rearrangements are being revealed. These "SV signatures" provide deep insight into the mutational processes that have shaped genome changes in human somatic cells. This review summarizes the characteristics of recently identified complex SVs, including chromothripsis, chromoplexy, microhomology-mediated breakage-induced replication (MMBIR), and others, to provide a holistic snapshot of the current knowledge on genomic rearrangements in somatic cells.
Collapse
Affiliation(s)
- Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
37
|
Cabel L, Jeannot E, Bieche I, Vacher S, Callens C, Bazire L, Morel A, Bernard-Tessier A, Chemlali W, Schnitzler A, Lièvre A, Otz J, Minsat M, Vincent-Salomon A, Pierga JY, Buecher B, Mariani P, Proudhon C, Bidard FC, Cacheux W. Prognostic Impact of Residual HPV ctDNA Detection after Chemoradiotherapy for Anal Squamous Cell Carcinoma. Clin Cancer Res 2018; 24:5767-5771. [DOI: 10.1158/1078-0432.ccr-18-0922] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/08/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
|
38
|
Tuna M, Amos CI. Next generation sequencing and its applications in HPV-associated cancers. Oncotarget 2018; 8:8877-8889. [PMID: 27784002 PMCID: PMC5352450 DOI: 10.18632/oncotarget.12830] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
Approximately 18% of all human cancers have a viral etiology, and human papillomavirus (HPV) has been identified as one of the most prevalent viruses that plays causative role in nearly all cervical cancers and, in addition, in subset of head and neck, anal, penile and vulvar cancers. The recent introduction of next generation sequencing (NGS) and other omics approaches have resulted in comprehensive knowledge on the pathogenesis of HPV-driven tumors. Specifically, these approaches have provided detailed information on genomic HPV integration sites, disrupted genes and pathways, and common and distinct genetic and epigenetic alterations in different human HPV-associated cancers. This review focuses on HPV integration sites, its concomitantly disrupted genes and pathways and its functional consequences in both cervical and head and neck cancers. Integration of NGS data with other omics and clinical data is crucial to better understand the pathophysiology of each individual malignancy and, based on this, to select targets and to design effective personalized treatment options.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon
| |
Collapse
|
39
|
Togtema M, Jackson R, Grochowski J, Villa PL, Mellerup M, Chattopadhyaya J, Zehbe I. Synthetic siRNA targeting human papillomavirus 16 E6: a perspective on in vitro nanotherapeutic approaches. Nanomedicine (Lond) 2018; 13:455-474. [PMID: 29382252 DOI: 10.2217/nnm-2017-0242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
High-risk human papillomaviruses infect skin and mucosa, causing approximately 5% of cancers worldwide. In the search for targeted nanotherapeutic approaches, siRNAs against the viral E6 transcript have been molecules of interest but have not yet seen successful translation into the clinic. By reviewing the past approximately 15 years of in vitro literature, we identify the need for siRNA validation protocols which concurrently evaluate ranges of key treatment parameters as well as characterize downstream process restoration in a methodical, quantitative manner and demonstrate their implementation using our own data. We also reflect on the future need for more appropriate cell culture models to represent patient lesions as well as the application of personalized approaches to identify optimal treatment strategies.
Collapse
Affiliation(s)
- Melissa Togtema
- Probe Development & Biomarker Exploration, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, P7B 6V4, Canada.,Biotechnology Program, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Robert Jackson
- Probe Development & Biomarker Exploration, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, P7B 6V4, Canada.,Biotechnology Program, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Jessica Grochowski
- Probe Development & Biomarker Exploration, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, P7B 6V4, Canada
| | - Peter L Villa
- Probe Development & Biomarker Exploration, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, P7B 6V4, Canada.,Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Miranda Mellerup
- Probe Development & Biomarker Exploration, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, P7B 6V4, Canada
| | - Jyoti Chattopadhyaya
- Program of Chemical Biology, Institute of Cell & Molecular Biology, Uppsala University, Uppsala, SE-75123, Sweden
| | - Ingeborg Zehbe
- Probe Development & Biomarker Exploration, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, P7B 6V4, Canada.,Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| |
Collapse
|
40
|
Liu L, Ying C, Zhao Z, Sui L, Zhang X, Qian C, Wang Q, Chen L, Guo Q, Wu J. Identification of reliable biomarkers of human papillomavirus 16 methylation in cervical lesions based on integration status using high-resolution melting analysis. Clin Epigenetics 2018; 10:10. [PMID: 29410710 PMCID: PMC5781301 DOI: 10.1186/s13148-018-0445-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/11/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The dynamic methylation of human papillomavirus (HPV) 16 DNA is thought to be associated with the progression of cervical lesions. Previous studies that did not consider the physical status of HPV 16 may have incorrectly mapped HPV 16 methylomes. In order to identify reliable biomarkers for squamous cervical cancer (SCC), we comprehensively evaluated the methylation of HPV 16 depending on the integration incidence of each sample. METHODS Based on the integration status of 115 HPV 16-infected patients (50 SCC, 30 high-grade squamous intraepithelial lesion [HSIL], and 35 low-grade squamous intraepithelial lesion [LSIL]) and HPV 16-infected Caski cell lines by PCR detection of integrated papillomavirus sequences, we designed a series of primers that would not be influenced by breakpoints for a high-resolution melting (HRM) PCR method to detect the genome methylation. RESULTS A few regions with recurrent interruptions were identified in E1, E2/E4, L1, and L2 despite scattering of breakpoints throughout all eight genes of HPV 16. Frequent integration sites often occurred concomitantly with methylated CpG sites. The HRM PCR method showed 100% agreement with pyrosequencing when 3% was set as the cutoff value. A panel of CpG sites such as nt5606, nt5609, nt5615, and nt5378 can be combined in reweighing calculations to distinguish SCC from HSIL and LSIL patients which have high sensitivity and specificity (88% and 92.31%, respectively). CONCLUSIONS Our research shows that combination of CpG sites nt5606, nt5609, nt5615, and nt5378 can be used as potential diagnosis biomarkers for SCC, and the HRM PCR method is suitable for clinical methylation analysis.
Collapse
Affiliation(s)
- Lu Liu
- Department of Clinical Laboratory, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Chunmei Ying
- Department of Clinical Laboratory, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Zhen Zhao
- Department of Clinical Laboratory, Minhang District Central Hospital, Shanghai, China
| | - Long Sui
- Medical Center of Diagnosis and Treatment for Cervical Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Xinyan Zhang
- The Research Institute of Obstetrics and Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chunyan Qian
- Yuhang Branch, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Qing Wang
- Medical Center of Diagnosis and Treatment for Cervical Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Limei Chen
- Medical Center of Diagnosis and Treatment for Cervical Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Qisang Guo
- Medical Center of Diagnosis and Treatment for Cervical Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road No. 419, Huangpu District, Shanghai, 200001 China
| | - Jiangnan Wu
- Department of Clinical Statistics, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
41
|
Warburton A, Redmond CJ, Dooley KE, Fu H, Gillison ML, Akagi K, Symer DE, Aladjem MI, McBride AA. HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression. PLoS Genet 2018; 14:e1007179. [PMID: 29364907 PMCID: PMC5798845 DOI: 10.1371/journal.pgen.1007179] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/05/2018] [Accepted: 01/01/2018] [Indexed: 12/12/2022] Open
Abstract
Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the chromatin landscape and genomic architecture of this integration locus to elucidate the mechanisms that promoted de novo super-enhancer formation. Using next-generation sequencing and molecular combing/fiber-FISH, we show that ~26 copies of HPV16 are integrated into an intergenic region of chromosome 2p23.2, interspersed with 25 kb of amplified, flanking cellular DNA. This interspersed, co-amplified viral-host pattern is frequent in HPV-associated cancers and here we designate it as Type III integration. An abundant viral-cellular fusion transcript encoding the viral E6/E7 oncogenes is expressed from the integration locus and the chromatin encompassing both the viral enhancer and a region in the adjacent amplified cellular sequences is strongly enriched in the super-enhancer markers H3K27ac and Brd4. Notably, the peak in the amplified cellular sequence corresponds to an epithelial-cell-type specific enhancer. Thus, HPV16 integration generated a super-enhancer-like element composed of tandem interspersed copies of the viral upstream regulatory region and a cellular enhancer, to drive high levels of oncogene expression.
Collapse
Affiliation(s)
- Alix Warburton
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine J. Redmond
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katharine E. Dooley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Haiqing Fu
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maura L. Gillison
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Keiko Akagi
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - David E. Symer
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
- Human Cancer Genetics Program, Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
- Department of Biomedical Informatics (adjunct), The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
42
|
Affiliation(s)
- Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alix Warburton
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
43
|
Abstract
Human papillomaviruses (HPVs) are a necessary cause of anogenital squamous cell carcinomas (SCC) and a subgroup of head and neck SCC, i.e., those originating in the oropharynx. The key events in high-risk HPV (HRHPV)-associated neoplastic progression include persistent infection, deregulated expression of virus early genes in basal epithelial cells, local immune suppression and the accumulation of chromosomal alterations. Evidence for these events particularly comes from studies of uterine cervical carcinogenesis; primary premalignant HRHPV-positive lesions of the head and neck mucosa are seldomly detected. Integration of virus DNA into host chromosomes is considered an important driver of carcinogenesis and observed in 40 up to 90 % of uterine cervical SCC (UCSCC) and oropharyngeal SCC (OPSCC), dependent on the integration detection method used and HRHPV type. In OPSCC, > 90 % HPV-positive tumors are infected with HPV16. Ten up to 60 % of HPV-positive tumors thus contain extrachromosomal (episomal) virus. In this chapter, causes and consequences of HPV integration are summarized from the literature, with special focus on the site of HPV integration in the cellular genome, and its effect on expression of viral oncogenes (particularly E6 and E7), on human (tumor) gene expression and on deregulation of cell proliferation, apoptosis and cell signaling pathways. Also data on DNA methylation, viral load and clinical outcome in relation to HPV integration are provided.
Collapse
Affiliation(s)
- Ernst Jan M Speel
- Unit Molecular Oncopathology & Diagnostics, Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
44
|
Abstract
Persistent infection with high-risk human papillomavirus (HPV) genotypes is the leading cause of cervical cancer development. To this end several studies have focused on designing molecular assays for HPV genotyping, which are considered as the gold standard for the early diagnosis of HPV infection. Moreover, the tendency of HPV DNA to be integrated into the host chromosome is a determining event for cervical oncogenesis. Thus, the establishment of molecular techniques was promoted in order to investigate the physical status of the HPV DNA and the locus of viral insertion into the host chromosome. The molecular approaches that have been developed recently facilitate the collection of a wide spectrum of valuable information specific to each individual patient and therefore can significantly contribute to the establishment of a personalised prognosis, diagnosis and treatment of HPV-positive patients. The present review focuses on state of the art molecular assays for HPV detection and genotyping for intra-lesion analyses, it examines molecular approaches for the determination of HPV-DNA physical status and it discusses the criteria for selecting the most appropriate regions of viral DNA to be incorporated in HPV genotyping and in the determination of HPV-DNA physical status.
Collapse
|
45
|
Liu Y, Lu Z, Xu R, Ke Y. Comprehensive mapping of the human papillomavirus (HPV) DNA integration sites in cervical carcinomas by HPV capture technology. Oncotarget 2016; 7:5852-64. [PMID: 26735580 PMCID: PMC4868726 DOI: 10.18632/oncotarget.6809] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/22/2015] [Indexed: 01/13/2023] Open
Abstract
Integration of human papillomavirus (HPV) DNA into the host genome can be a driver mutation in cervical carcinoma. Identification of HPV integration at base resolution has been a longstanding technical challenge, largely due to sensitivity masking by HPV in episomes or concatenated forms. The aim was to enhance the understanding of the precise localization of HPV integration sites using an innovative strategy. Using HPV capture technology combined with next generation sequencing, HPV prevalence and the exact integration sites of the HPV DNA in 47 primary cervical cancer samples and 2 cell lines were investigated. A total of 117 unique HPV integration sites were identified, including HPV16 (n = 101), HPV18 (n = 7), and HPV58 (n = 9). We observed that the HPV16 integration sites were broadly located across the whole viral genome. In addition, either single or multiple integration events could occur frequently for HPV16, ranging from 1 to 19 per sample. The viral integration sites were distributed across almost all the chromosomes, except chromosome 22. All the cervical cancer cases harboring more than four HPV16 integration sites showed clinical diagnosis of stage III carcinoma. A significant enrichment of overlapping nucleotides shared between the human genome and HPV genome at integration breakpoints was observed, indicating that it may play an important role in the HPV integration process. The results expand on knowledge from previous findings on HPV16 and HPV18 integration sites and allow a better understanding of the molecular basis of the pathogenesis of cervical carcinoma.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ruiping Xu
- Anyang Cancer Hospital, Henan Province, China
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
46
|
Jackson R, Rosa BA, Lameiras S, Cuninghame S, Bernard J, Floriano WB, Lambert PF, Nicolas A, Zehbe I. Functional variants of human papillomavirus type 16 demonstrate host genome integration and transcriptional alterations corresponding to their unique cancer epidemiology. BMC Genomics 2016; 17:851. [PMID: 27806689 PMCID: PMC5094076 DOI: 10.1186/s12864-016-3203-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human papillomaviruses (HPVs) are a worldwide burden as they are a widespread group of tumour viruses in humans. Having a tropism for mucosal tissues, high-risk HPVs are detected in nearly all cervical cancers. HPV16 is the most common high-risk type but not all women infected with high-risk HPV develop a malignant tumour. Likely relevant, HPV genomes are polymorphic and some HPV16 single nucleotide polymorphisms (SNPs) are under evolutionary constraint instigating variable oncogenicity and immunogenicity in the infected host. RESULTS To investigate the tumourigenicity of two common HPV16 variants, we used our recently developed, three-dimensional organotypic model reminiscent of the natural HPV infectious cycle and conducted various "omics" and bioinformatics approaches. Based on epidemiological studies we chose to examine the HPV16 Asian-American (AA) and HPV16 European Prototype (EP) variants. They differ by three non-synonymous SNPs in the transforming and virus-encoded E6 oncogene where AAE6 is classified as a high- and EPE6 as a low-risk variant. Remarkably, the high-risk AAE6 variant genome integrated into the host DNA, while the low-risk EPE6 variant genome remained episomal as evidenced by highly sensitive Capt-HPV sequencing. RNA-seq experiments showed that the truncated form of AAE6, integrated in chromosome 5q32, produced a local gene over-expression and a large variety of viral-human fusion transcripts, including long distance spliced transcripts. In addition, differential enrichment of host cell pathways was observed between both HPV16 E6 variant-containing epithelia. Finally, in the high-risk variant, we detected a molecular signature of host chromosomal instability, a common property of cancer cells. CONCLUSIONS We show how naturally occurring SNPs in the HPV16 E6 oncogene cause significant changes in the outcome of HPV infections and subsequent viral and host transcriptome alterations prone to drive carcinogenesis. Host genome instability is closely linked to viral integration into the host genome of HPV-infected cells, which is a key phenomenon for malignant cellular transformation and the reason for uncontrolled E6 oncogene expression. In particular, the finding of variant-specific integration potential represents a new paradigm in HPV variant biology.
Collapse
Affiliation(s)
- Robert Jackson
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada.,Biotechnology Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonia Lameiras
- NGS platform, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris, Cedex, France
| | - Sean Cuninghame
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Josee Bernard
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada.,Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Wely B Floriano
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alain Nicolas
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique UMR3244, Sorbonne Universités, Paris, France
| | - Ingeborg Zehbe
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada. .,Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada. .,Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
47
|
Das P, Thomas A, Kannan S, Deodhar K, Shrivastava SK, Mahantshetty U, Mulherkar R. Human papillomavirus (HPV) genome status & cervical cancer outcome--A retrospective study. Indian J Med Res 2016; 142:525-32. [PMID: 26658585 PMCID: PMC4743337 DOI: 10.4103/0971-5916.171276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background & objectives: Persistent infections with high-risk (HR) human papillomaviruses such as HPV 16, 18, 31, 33 and 45 have been identified as the major aetiological factor for cervical cancer. The clinical outcome of the disease is often determined by viral factors such as viral load, physical status and oncogene expression. The aim of the present study was to evaluate the impact of such factors on clinical outcome in HPV16 positive, locally advanced cervical cancer cases. Methods: One hundred and thirty two pretreatment cervical tumour biopsies were selected from patients undergoing radiotherapy alone (n=63) or concomitant chemo-radiation (n=69). All the samples were positive for HPV 16. Quantitative real time-PCR was carried out to determine viral load and oncogene expression. Physical status of the virus was determined for all the samples by the ratio of E2copies/E7copies; while in 73 cases, the status was reanalyzed by more sensitive APOT (amplification of papillomavirus oncogene transcripts) assay. Univariate analysis of recurrence free survival was carried out using Kaplan-Meier method and for multivariate analysis the Cox proportional hazard model was used. Results: The median viral load was 19.4 (IQR, 1.9- 69.3), with viral integration observed in 86 per cent cases by combination of the two methodologies. Both univariate and multivariate analyses identified viral physical status as a good predictor of clinical outcome following radiation treatment, with episomal form being associated with increased recurrence free survival. Interpretation & conclusions: The present study results showed that viral physical status might act as an important prognostic factor in cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rita Mulherkar
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
48
|
Bodelon C, Untereiner ME, Machiela MJ, Vinokurova S, Wentzensen N. Genomic characterization of viral integration sites in HPV-related cancers. Int J Cancer 2016; 139:2001-11. [PMID: 27343048 DOI: 10.1002/ijc.30243] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/20/2016] [Accepted: 06/09/2016] [Indexed: 01/14/2023]
Abstract
Persistent infection with carcinogenic human papillomaviruses (HPV) causes the majority of anogenital cancers and a subset of head and neck cancers. The HPV genome is frequently found integrated into the host genome of invasive cancers. The mechanisms of how it may promote disease progression are not well understood. Thoroughly characterizing integration events can provide insights into HPV carcinogenesis. Individual studies have reported limited number of integration sites in cell lines and human samples. We performed a systematic review of published integration sites in HPV-related cancers and conducted a pooled analysis to formally test for integration hotspots and genomic features enriched in integration events using data from the Encyclopedia of DNA Elements (ENCODE). Over 1,500 integration sites were reported in the literature, of which 90.8% (N = 1,407) were in human tissues. We found 10 cytobands enriched for integration events, three previously reported ones (3q28, 8q24.21 and 13q22.1) and seven additional ones (2q22.3, 3p14.2, 8q24.22, 14q24.1, 17p11.1, 17q23.1 and 17q23.2). Cervical infections with HPV18 were more likely to have breakpoints in 8q24.21 (p = 7.68 × 10(-4) ) than those with HPV16. Overall, integration sites were more likely to be in gene regions than expected by chance (p = 6.93 × 10(-9) ). They were also significantly closer to CpG regions, fragile sites, transcriptionally active regions and enhancers. Few integration events occurred within 50 Kb of known cervical cancer driver genes. This suggests that HPV integrates in accessible regions of the genome, preferentially genes and enhancers, which may affect the expression of target genes.
Collapse
Affiliation(s)
- Clara Bodelon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Michael E Untereiner
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Svetlana Vinokurova
- Laboratory of Molecular Biology of Viruses, NN Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|
49
|
Jeannot E, Becette V, Campitelli M, Calméjane MA, Lappartient E, Ruff E, Saada S, Holmes A, Bellet D, Sastre-Garau X. Circulating human papillomavirus DNA detected using droplet digital PCR in the serum of patients diagnosed with early stage human papillomavirus-associated invasive carcinoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2016; 2:201-209. [PMID: 27917295 PMCID: PMC5129558 DOI: 10.1002/cjp2.47] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
Specific human papillomavirus genotypes are associated with most ano‐genital carcinomas and a large subset of oro‐pharyngeal carcinomas. Human papillomavirus DNA is thus a tumour marker that can be detected in the blood of patients for clinical monitoring. However, data concerning circulating human papillomavirus DNA in cervical cancer patients has provided little clinical value, due to insufficient sensitivity of the assays used for the detection of small sized tumours. Here we took advantage of the sensitive droplet digital PCR method to identify circulating human papillomavirus DNA in patients with human papillomavirus‐associated carcinomas. A series of 70 serum specimens, taken at the time of diagnosis, between 2002 and 2013, were retrospectively analyzed in patients with human papillomavirus‐16 or human papillomavirus‐18‐associated carcinomas, composed of 47 cases from the uterine cervix, 15 from the anal canal and 8 from the oro‐pharynx. As negative controls, 18 serum samples from women with human papillomavirus‐16‐associated high‐grade cervical intraepithelial neoplasia were also analyzed. Serum samples were stored at −80°C (27 cases) or at −20°C (43 cases). DNA was isolated from 200 µl of serum or plasma and droplet digital PCR was performed using human papillomavirus‐16 E7 and human papillomavirus‐18 E7 specific primers. Circulating human papillomavirus DNA was detected in 61/70 (87%) serum samples from patients with carcinoma and in no serum from patients with cervical intraepithelial neoplasia. The positivity rate increased to 93% when using only serum stored at −80°C. Importantly, the two patients with microinvasive carcinomas in this series were positive. Quantitative evaluation showed that circulating viral DNA levels in cervical cancer patients were related to the clinical stage and tumour size, ranging from 55 ± 85 copies/ml (stage I) to 1774 ± 3676 copies/ml (stage IV). Circulating human papillomavirus DNA is present in patients with human papillomavirus‐associated invasive cancers even at sub‐clinical stages and its level is related to tumour dynamics. Droplet digital PCR is a promising method for circulating human papillomavirus DNA detection and quantification. No positivity was found in patients with human papillomavirus‐associated high grade cervical intraepithelial neoplasia.
Collapse
Affiliation(s)
| | | | - Maura Campitelli
- Department of Radiotherapy Institut Curie 75248 Paris Cedex 05 France
| | | | | | - Evelyne Ruff
- Department of Biopathology Institut Curie 92210 St Cloud France
| | - Stéphanie Saada
- Department of Biopathology Institut Curie 75248 Paris Cedex 05 France
| | - Allyson Holmes
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 3244, Sorbonne Universités Paris France
| | | | - Xavier Sastre-Garau
- Department of Biopathology Institut de Cancérologie de Lorraine 6, Avenue de Bourgogne-CS30519, 54519 Vandoeuvre-les-Nancy France
| |
Collapse
|
50
|
Holmes A, Lameiras S, Jeannot E, Marie Y, Castera L, Sastre-Garau X, Nicolas A. Mechanistic signatures of HPV insertions in cervical carcinomas. NPJ Genom Med 2016; 1:16004. [PMID: 29263809 PMCID: PMC5685317 DOI: 10.1038/npjgenmed.2016.4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/12/2016] [Accepted: 01/27/2016] [Indexed: 12/18/2022] Open
Abstract
To identify new personal biomarkers for the improved diagnosis, prognosis and biological follow-up of human papillomavirus (HPV)-associated carcinomas, we developed a generic and comprehensive Capture-HPV method followed by Next Generation Sequencing (NGS). Starting from biopsies or circulating DNA samples, this Capture-NGS approach rapidly identifies the HPV genotype, HPV status (integrated, episomal or absence), the viral-host DNA junctions and the associated genome rearrangements. This analysis of 72 cervical carcinomas identified five HPV signatures. The first two signatures contain two hybrid chromosomal-HPV junctions whose orientations are co-linear (2J-COL) or non-linear (2J-NL), revealing two modes of viral integration associated with chromosomal deletion or amplification events, respectively. The third and fourth signatures exhibit 3-12 hybrid junctions, either clustered in one locus (MJ-CL) or scattered at distinct loci (MJ-SC) while the fifth signature consists of episomal HPV genomes (EPI). Cross analyses between the HPV signatures and the clinical and virological data reveal unexpected biased representation with respect to the HPV genotype, patient age and disease outcome, suggesting functional relevance(s) of this new classification. Overall, our findings establish a facile and comprehensive rational approach for the molecular detection of any HPV-associated carcinoma and definitive personalised sequence information to develop sensitive and specific biomarkers for each patient.
Collapse
Affiliation(s)
- Allyson Holmes
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique UMR3244, Sorbonne Universités, Paris
, France
| | - Sonia Lameiras
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique UMR3244, Sorbonne Universités, Paris
, France
| | - Emmanuelle Jeannot
- Department of Biopathology, Institut Curie, PSL Research University, Paris
, France
| | - Yannick Marie
- Institut du Cerveau et de la Moelle épinière (ICM), Genotyping and Sequencing Platform, Pitié-Salpêtrière Hôpital, Paris, France
| | - Laurent Castera
- Department of Genetics, Centre François Baclesse, Caen, France
| | - Xavier Sastre-Garau
- Department of Biopathology, Institut Curie, PSL Research University, Paris
, France
| | - Alain Nicolas
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique UMR3244, Sorbonne Universités, Paris
, France
| |
Collapse
|