1
|
Nassief G, Butt OH, Zhou AY, Ansstas G. Poly (ADP-Ribose) Polymerase inhibitors (PARPi) therapy response in an acral melanoma patient with EMSY gene amplification. JAAD Case Rep 2024; 48:59-61. [PMID: 38778889 PMCID: PMC11108796 DOI: 10.1016/j.jdcr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Affiliation(s)
- George Nassief
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Omar H. Butt
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Alice Y. Zhou
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| |
Collapse
|
2
|
Mangogna A, Munari G, Pepe F, Maffii E, Giampaolino P, Ricci G, Fassan M, Malapelle U, Biffi S. Homologous Recombination Deficiency in Ovarian Cancer: from the Biological Rationale to Current Diagnostic Approaches. J Pers Med 2023; 13:284. [PMID: 36836518 PMCID: PMC9968181 DOI: 10.3390/jpm13020284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The inability to efficiently repair DNA double-strand breaks using the homologous recombination repair pathway is defined as homologous recombination deficiency (HRD). This molecular phenotype represents a positive predictive biomarker for the clinical use of poly (adenosine diphosphate [ADP]-ribose) polymerase inhibitors and platinum-based chemotherapy in ovarian cancers. However, HRD is a complex genomic signature, and different methods of analysis have been developed to introduce HRD testing in the clinical setting. This review describes the technical aspects and challenges related to HRD testing in ovarian cancer and outlines the potential pitfalls and challenges that can be encountered in HRD diagnostics.
Collapse
Affiliation(s)
- Alessandro Mangogna
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Giada Munari
- Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Edoardo Maffii
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | | | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, 34149 Trieste, Italy
| | - Matteo Fassan
- Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Biffi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
3
|
Locally Performed HRD Testing for Ovarian Cancer? Yes, We Can! Cancers (Basel) 2022; 15:cancers15010043. [PMID: 36612041 PMCID: PMC9817883 DOI: 10.3390/cancers15010043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Assessment of HRD status is now essential for ovarian cancer patient management. A relevant percentage of high-grade serous carcinoma (HGSC) is characterized by HRD, which is caused by genetic alterations in the homologous recombination repair (HRR) pathway. Recent trials have shown that not only patients with pathogenic/likely pathogenic BRCA variants, but also BRCAwt/HRD patients, are sensitive to PARPis and platinum therapy. The most common HRD test is Myriad MyChoice CDx, but there is a pressing need to offer an alternative to outsourcing analysis, which typically requires high costs and lengthy turnaround times. In order to set up a complete in-house workflow for HRD testing, we analyzed a small cohort of HGSC patients using the CE-IVD AmoyDx HRD Focus Panel and compared our results with Myriad's. In addition, to further deepen the mechanisms behind HRD, we analyzed the study cohort by using both a custom NGS panel that analyzed 21 HRR-related genes and FISH analysis to determine the copy numbers of PTEN and EMSY. We found complete concordance in HRD status detected by the Amoy and the Myriad assays, supporting the feasibility of internal HRD testing.
Collapse
|
4
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
5
|
Hobbs EA, Litton JK, Yap TA. Development of the PARP inhibitor talazoparib for the treatment of advanced BRCA1 and BRCA2 mutated breast cancer. Expert Opin Pharmacother 2021; 22:1825-1837. [PMID: 34309473 DOI: 10.1080/14656566.2021.1952181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION BRCA1 and BRCA2 (BRCA1/2) mutation breast cancers constitute an uncommon, but unique group of breast cancers that present at a younger age, and are underscored by genomic instability and accumulation of DNA damage. Talazoparib is a potent poly(ADP-ribose) polymerase (PARP) inhibitor that exploits impaired DNA damage response mechanisms in this population of patients and results in significant efficacy. Based on the results of the EMBRACA trial, talazoparib was approved for the treatment of patients with advanced germline BRCA1/2 mutant breast cancer. AREAS COVERED In this review, the authors highlight the relevant clinical trials of talazoparib, as well as, safety, tolerability, and quality of life considerations. They also examine putative response and resistance mechanisms, and rational combinatorial therapeutic strategies under development. EXPERT OPINION Talazoparib has been a major advance in the treatment of germline BRCA1/2 mutation breast cancer with both clinical efficacy and improvement in quality of life compared to standard cytotoxic chemotherapy. To date, the optimal sequencing of talazoparib administration in the metastatic setting has not yet been established. A deeper understanding of response and resistance mechanisms, and more broadly, the DNA repair pathway, will lead to additional opportunities in targeting this pathway and open up therapeutic indications to a broader patient population.
Collapse
Affiliation(s)
- Evthokia A Hobbs
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Breast Medical Oncology Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Lu R, Xie S, Wang Y, Zheng H, Zhang H, Deng M, Shi W, Zhong A, Chen M, Zhang M, Xu X, Shammas MA, Guo L. MUS81 Participates in the Progression of Serous Ovarian Cancer Associated With Dysfunctional DNA Repair System. Front Oncol 2019; 9:1189. [PMID: 31803609 PMCID: PMC6873896 DOI: 10.3389/fonc.2019.01189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: Methyl methanesulfonate ultraviolet sensitive gene clone 81 (MUS81) is a structure-specific endonuclease that plays a pivotal role in the DNA repair system of cancer cells. In this study, we aim to elucidate the potential association between the dysfunction of MUS81 and the progression of Serous Ovarian Cancer (SOC). Methods: To investigate the association between MUS81 and prognosis of SOC, immunohistochemistry technology and qPCR were used to analyze the level of MUS81 expression, and transcriptional profile analysis and protein interaction screening chip were used to explore the MUS81 related signal pathways. Random amplified polymorphic DNA (RAPD) analysis, immunofluorescence and comet assays were further performed to evaluate genomic instability and DNA damage status of transduced SOC cells. Experiments both in vitro and in vivo were conducted to verify the impact of MUS81 silencing on chemotherapeutic drug sensitivity of SOC. Results: The overexpression of MUS81 in SOC tissues was related to poor clinical outcomes. The transcriptional chip data showed that MUS81 was involved in multiple pathways associated with DNA repair. Deficiency of MUS81 intensified the genome instability of SOC cells, promoted the emergence of DSBs and restrained the formation of RAD51 foci in SOC cells with exposure to UV. Furthermore, downregulation of MUS81 enhanced the sensitivity to Camptothecin and Olaparib in SOC cell lines and xenograft model. Conclusions: MUS81 is involved in the progression of SOC and inhibition of MUS81 could augment the susceptibility to chemotherapeutic agents. MUS81 might represent a novel molecular target for SOC chemotherapy.
Collapse
Affiliation(s)
- Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hongqin Zhang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minjie Deng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weizhong Shi
- Department of Clinical Laboratory, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Ailing Zhong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miaomiao Chen
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meiqin Zhang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaofeng Xu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Masood A Shammas
- Department of Medical Oncology, Dana Farber (Harvard) Cancer Institute, Boston, MA, United States
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Hollis RL, Churchman M, Michie CO, Rye T, Knight L, McCavigan A, Perren T, Williams ARW, McCluggage WG, Kaplan RS, Jayson GC, Oza A, Harkin DP, Herrington CS, Kennedy R, Gourley C. High EMSY expression defines a BRCA-like subgroup of high-grade serous ovarian carcinoma with prolonged survival and hypersensitivity to platinum. Cancer 2019; 125:2772-2781. [PMID: 31154673 PMCID: PMC6771827 DOI: 10.1002/cncr.32079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 11/14/2022]
Abstract
BACKGROUND Approximately half of high-grade serous ovarian carcinomas (HGSOCs) demonstrate homologous recombination repair (HR) pathway defects, resulting in a distinct clinical phenotype comprising hypersensitivity to platinum, superior clinical outcome, and greater sensitivity to poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors. EMSY, which is known to be amplified in breast and ovarian cancers, encodes a protein reported to bind and inactivate BRCA2. Thus, EMSY overexpression may mimic BRCA2 mutation, resulting in HR deficiency. However, to our knowledge, the phenotypic consequences of EMSY overexpression in HGSOC patients has not been explored. METHODS Here we investigate the impact of EMSY expression on clinical outcome and sensitivity to platinum-based chemotherapy using available data from transcriptomically characterized HGSOC cohorts. RESULTS High EMSY expression was associated with better clinical outcome in a cohort of 265 patients with HGSOC from Edinburgh (overall survival multivariable hazard ratio, 0.58 [95% CI, 0.38-0.88; P = .011] and progression-free survival multivariable hazard ratio, 0.62 [95% CI, 0.40-0.96; P = .030]). Superior outcome also was demonstrated in the Medical Research Council ICON7 clinical trial and multiple publicly available data sets. Patients within the Edinburgh cohort who had high EMSY expression were found to demonstrate greater rates of complete response to multiple platinum-containing chemotherapy regimens (radiological complete response rate of 44.4% vs 12.5% at second exposure; P = .035) and corresponding prolonged time to disease progression (median, 151.5 days vs 60.5 days after third platinum exposure; P = .004). CONCLUSIONS Patients with HGSOCs demonstrating high EMSY expression appear to experience prolonged survival and greater platinum sensitivity, reminiscent of BRCA-mutant cases. These data are consistent with the notion that EMSY overexpression may render HGSOCs HR deficient.
Collapse
Affiliation(s)
- Robert L. Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Michael Churchman
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Caroline O. Michie
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Tzyvia Rye
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | | | | | - Timothy Perren
- St. James's Institute of OncologySt. James's University HospitalLeedsUnited Kingdom
| | | | - W. Glenn McCluggage
- Center for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUnited Kingdom
- Department of PathologyBelfast Health and Social Care TrustBelfastUnited Kingdom
| | - Richard S. Kaplan
- Medical Research Council Clinical Trials Unit at University College LondonLondonUnited Kingdom
| | - Gordon C. Jayson
- Division of Molecular and Clinical Cancer SciencesUniversity of ManchesterManchesterUnited Kingdom
| | - Amit Oza
- Cancer Clinical Research Unit, Division of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity of TorontoTorontoOntarioCanada
| | - D. Paul Harkin
- Almac DiagnosticsCraigavonUnited Kingdom
- Center for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUnited Kingdom
| | - C. Simon Herrington
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
- Department of PathologyUniversity of EdinburghEdinburghUnited Kingdom
- Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Richard Kennedy
- Almac DiagnosticsCraigavonUnited Kingdom
- Center for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUnited Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
8
|
Kondrashova O, Scott CL. Clarifying the role of EMSY in DNA repair in ovarian cancer. Cancer 2019; 125:2720-2724. [PMID: 31154666 DOI: 10.1002/cncr.32135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Olga Kondrashova
- Cancer Biology and Stem Cells Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Clare L Scott
- Cancer Biology and Stem Cells Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Royal Women's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
van Zyl B, Tang D, Bowden NA. Biomarkers of platinum resistance in ovarian cancer: what can we use to improve treatment. Endocr Relat Cancer 2018; 25:R303-R318. [PMID: 29487129 DOI: 10.1530/erc-17-0336] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/27/2018] [Indexed: 12/19/2022]
Abstract
Ovarian cancer has poor survival rates due to a combination of diagnosis at advanced disease stages and disease recurrence as a result of platinum chemotherapy resistance. High-grade serous ovarian cancer (HGSOC), the most common ovarian cancer subtype, is conventionally treated with surgery and paclitaxel/carboplatin combination chemotherapy. Initial response rates are 60-80%, but eventually the majority of patients become platinum-resistant with subsequent relapses. Extensive research on individual biomarkers of platinum resistance has revealed many potential targets for the development new treatments. While this is ongoing, there are also epigenetic, DNA repair, genome and immune changes characterised in platinum-resistant HGSOC that can be targeted with current therapies. This review discusses biomarkers of platinum chemotherapy resistance in ovarian cancer with a focus on biomarkers that are targetable with alternative treatment combinations to those currently used. After decades of research focused on elucidating the biological cause of platinum resistance, future research needs to focus on using this knowledge to overcome resistance for patients with ovarian cancer.
Collapse
Affiliation(s)
- Belinda van Zyl
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, New South Wales, Australia
| | - Denise Tang
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, New South Wales, Australia
| | - Nikola A Bowden
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, New South Wales, Australia
| |
Collapse
|
10
|
Clinical importance of the EMSY gene expression and polymorphisms in ovarian cancer. Oncotarget 2018; 9:17735-17755. [PMID: 29707144 PMCID: PMC5915152 DOI: 10.18632/oncotarget.24878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
EMSY, a BRCA2–associated protein, is amplified and overexpressed in various sporadic cancers. This is the first study assessing the clinical impact of its expression and polymorphisms on ovarian cancer (OvCa) outcome in the context of the chemotherapy regimen used. In 134 frozen OvCa samples, we assessed EMSY mRNA expression with Reverse Transcription-quantitative PCR, and also investigated the EMSY gene sequence using SSCP and/or PCR-sequencing. Clinical relevance of changes in EMSY mRNA expression and DNA sequence was evaluated in two subgroups treated with either taxane/platinum (TP, n=102) or platinum/cyclophosphamide (PC, n=32). High EMSY expression negatively affected overall survival (OS), disease-free survival (DFS) and sensitivity to treatment (PS) in the TP-treated subgroup (p-values: 0.001, 0.002 and 0.010, respectively). Accordingly, our OvCa cell line studies showed that the EMSY gene knockdown sensitized A2780 and IGROV1 cells to paclitaxel. Interestingly, EMSY mRNA expression in surviving cells was similar as in the control cells. Additionally, we identified 24 sequence alterations in the EMSY gene, including the previously undescribed: c.720G>C, p.(Lys240Asn); c.1860G>A, p.(Lys620Lys); c.246-76A>G; c.421+68A>C. In the PC-treated subgroup, a heterozygous genotype comprising five SNPs (rs4300410, rs3814711, rs4245443, rs2508740, rs2513523) negatively correlated with OS (p-value=0.009). The same SNPs exhibited adverse borderline associations with PS in the TP-treated subgroup. This is the first study providing evidence that high EMSY mRNA expression is a negative prognostic and predictive factor in OvCa patients treated with TP, and that the clinical outcome may hinge on certain SNPs in the EMSY gene as well.
Collapse
|
11
|
Nesic K, Wakefield M, Kondrashova O, Scott CL, McNeish IA. Targeting DNA repair: the genome as a potential biomarker. J Pathol 2018; 244:586-597. [PMID: 29282716 DOI: 10.1002/path.5025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/18/2023]
Abstract
Genomic instability and mutations are fundamental aspects of human malignancies, leading to progressive accumulation of the hallmarks of cancer. For some time, it has been clear that key mutations may be used as both prognostic and predictive biomarkers, the best-known examples being the presence of germline BRCA1 or BRCA2 mutations, which are not only associated with improved prognosis in ovarian cancer, but are also predictive of response to poly(ADP-ribose) polymerase (PARP) inhibitors. Although biomarkers as specific and powerful as these are rare in human malignancies, next-generation sequencing and improved bioinformatic analyses are revealing mutational signatures, i.e. broader patterns of alterations in the cancer genome that have the power to reveal information about underlying driver mutational processes. Thus, the cancer genome can act as a stratification factor in clinical trials and, ultimately, will be used to drive personalized treatment decisions. In this review, we use ovarian high-grade serous carcinoma (HGSC) as an example of a disease of extreme genomic complexity that is marked by widespread copy number alterations, but that lacks powerful driver oncogene mutations. Understanding of the genomics of HGSC has led to the routine introduction of germline and somatic BRCA1/2 testing, as well as testing of mutations in other homologous recombination genes, widening the range of patients who may benefit from PARP inhibitors. We will discuss how whole genome-wide analyses, including loss of heterozygosity quantification and whole genome sequencing, may extend this paradigm to allow all patients to benefit from effective targeted therapies. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Animals
- BRCA1 Protein/genetics
- BRCA2 Protein/genetics
- Biomarkers, Tumor/genetics
- Clinical Decision-Making
- DNA Damage
- DNA Repair
- Female
- Genetic Predisposition to Disease
- Genomics/methods
- Humans
- Mutation
- Neoplasm Grading
- Neoplasms, Cystic, Mucinous, and Serous/drug therapy
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Pathology, Molecular/methods
- Phenotype
- Precision Medicine
- Predictive Value of Tests
Collapse
Affiliation(s)
- Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Wakefield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
| | - Olga Kondrashova
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Clare L Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Royal Women's Hospital, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | | |
Collapse
|
12
|
Wilkerson PM, Dedes KJ, Samartzis EP, Dedes I, Lambros MB, Natrajan R, Gauthier A, Piscuoglio S, Töpfer C, Vukovic V, Daley F, Weigelt B, Reis-Filho JS. Preclinical evaluation of the PARP inhibitor BMN-673 for the treatment of ovarian clear cell cancer. Oncotarget 2018; 8:6057-6066. [PMID: 28002809 PMCID: PMC5351612 DOI: 10.18632/oncotarget.14011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2016] [Indexed: 12/18/2022] Open
Abstract
Purpose To determine if models of ovarian clear cell carcinomas (OCCCs) harbouring defects in homologous recombination (HR) DNA repair of double strand breaks (DSBs) are sensitive to cisplatin and/or PARP inhibition. Experimental Design The HR status of 12 OCCC cell lines was determined using RAD51/γH2AX foci formation assays. Sensitivity to cisplatin and the PARP inhibitor BMN-673 was correlated with HR status. BRCA1, BRCA2, MRE11 and PTEN loss of expression was investigated as a potential determinant of BMN-673 sensitivity. A tissue microarray containing 50 consecutive primary OCCC was assessed for PTEN expression using immunohistochemistry. Results A subset of OCCC cells displayed reduced RAD51 foci formation in the presence of DNA DSBs, suggestive of HR defects. HR-defective OCCC cells, with the exception of KOC-7c, had higher sensitivity to cisplatin/ BMN-673 than HR-competent OCCC cell lines (Log10 SF50 –9.4 (SD +/− 0.29) vs –8.1 (SD +/− 0.35), mean difference 1.3, p < 0.01). Of the cell lines studied, two, TOV-21G and KOC-7c, showed loss of PTEN expression. In primary OCCCs, loss of PTEN expression was observed in 10% (5/49) of cases. Conclusions A subset of OCCC cells are sensitive to PARP inhibition in vitro, which can be predicted by HR defects as defined by γH2AX/RAD51 foci formation. These results provide a rationale for the testing of HR deficiency and PARP inhibitors as a targeted therapy in a subset of OCCCs.
Collapse
Affiliation(s)
- Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Konstantin J Dedes
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.,Department of Gynaecology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | | | - Ioannis Dedes
- Department of Gynaecology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Maryou B Lambros
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Arnaud Gauthier
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chantal Töpfer
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Vesna Vukovic
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Frances Daley
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge S Reis-Filho
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
13
|
Jelinic P, Eccles LA, Tseng J, Cybulska P, Wielgos M, Powell SN, Levine DA. The EMSY threonine 207 phospho-site is required for EMSYdriven suppression of DNA damage repair. Oncotarget 2017; 8:13792-13804. [PMID: 28099152 PMCID: PMC5355139 DOI: 10.18632/oncotarget.14637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 01/07/2023] Open
Abstract
BRCA1 and BRCA2 are essential for the repair of double-strand DNA breaks, and alterations in these genes are a hallmark of breast and ovarian carcinomas. Other functionally related genes may also play important roles in carcinogenesis. Amplification of EMSY, a putative BRCAness gene, has been suggested to impair DNA damage repair by suppressing BRCA2 function. We employed direct repeat GFP (DR-GFP) and RAD51 foci formation assays to show that EMSY overexpression impairs the repair of damaged DNA, suggesting that EMSY belongs to the family of BRCAness proteins. We also identified a novel phospho-site at threonine 207 (T207) and demonstrated its role in EMSY-driven suppression of DNA damage repair. In vitro kinase assays established that protein kinase A (PKA) directly phosphorylates the T207 phospho-site. Immunoprecipitation experiments suggest that EMSY-driven suppression of DNA damage repair is a BRCA2-independent process. The data also suggest that EMSY amplification is a BRCAness feature, and may help to expand the population of patients who could benefit from targeted therapies that are also effective in BRCA1/2-mutant cancers.
Collapse
Affiliation(s)
- Petar Jelinic
- Laura and Isaac Perlmutter Cancer Center, Division of Gynecologic Oncology, Department of OB/GYN, NYU Langone Medical Center, New York, USA
| | - Laura A Eccles
- Departments of Radiation Oncology and Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jill Tseng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Paulina Cybulska
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Monicka Wielgos
- Laura and Isaac Perlmutter Cancer Center, Division of Gynecologic Oncology, Department of OB/GYN, NYU Langone Medical Center, New York, USA
| | - Simon N Powell
- Departments of Radiation Oncology and Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Douglas A Levine
- Laura and Isaac Perlmutter Cancer Center, Division of Gynecologic Oncology, Department of OB/GYN, NYU Langone Medical Center, New York, USA
| |
Collapse
|
14
|
Relevance of chromosomal band 11q13 in oral carcinogenesis: An update of current knowledge. Oral Oncol 2017; 72:7-16. [DOI: 10.1016/j.oraloncology.2017.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
|
15
|
Oda K, Tanikawa M, Sone K, Mori-Uchino M, Osuga Y, Fujii T. Recent advances in targeting DNA repair pathways for the treatment of ovarian cancer and their clinical relevance. Int J Clin Oncol 2017; 22:611-618. [DOI: 10.1007/s10147-017-1137-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 11/24/2022]
|
16
|
Gadducci A, Guerrieri ME. PARP inhibitors alone and in combination with other biological agents in homologous recombination deficient epithelial ovarian cancer: From the basic research to the clinic. Crit Rev Oncol Hematol 2017; 114:153-165. [PMID: 28477743 DOI: 10.1016/j.critrevonc.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Hereditary epithelial ovarian cancer [EOC] in germline BRCA mutation (gBRCAm) carriers has a distinct clinical behavior characterized by younger age, high- grade serous histology, advanced stage, visceral distribution of disease, high response to platinum and other non-platinum agents and better clinical outcome. Sporadic EOC with homologous recombination deficiency [HDR] but no gBRCAm has the same biological and clinical behavior as EOC in gBRCAm carriers ("BRCAness"phenotype). Biomarkers are in development to enable an accurate definition of molecular features of BRCAness phenotype, and trials are warranted to determine whether such HDR signature will predict sensitivity to PARP inhibitors in sporadic EOC. Moreover, the link between PARP inhibition and angiogenesis suppression, the immunologic properties of EOC in gBRCAm carriers, the HRD induced by PI3K inhibition in EOC cells in vitro strongly support novel clinical trials testing the combination of PARP inhibitors with other biological agents.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy.
| | - Maria Elena Guerrieri
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| |
Collapse
|
17
|
Baykara O, Dalay N, Bakir B, Bulut P, Kaynak K, Buyru N. The EMSY Gene Collaborates with CCND1 in Non-Small Cell Lung Carcinogenesis. Int J Med Sci 2017; 14:675-679. [PMID: 28824300 PMCID: PMC5562119 DOI: 10.7150/ijms.19355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Lung cancer is the leading cause of cancer deaths. The main risk factor is smoking but the risk is also associated with various genetic and epigenetic components in addition to environmental factors. Increases in the gene copy numbers due to chromosomal amplifications constitute a common mechanism for oncogene activation. A gene-dense region on chromosome 11q13 which harbors four core regions that are frequently amplified, has been associated with various types of cancer. The important cell cycle regulatory protein cyclin D1 (CCND1) is an essential driver of the first core region of the Chr11q13 amplicon. Deregulation of CCND1 has been associated with different kinds of human malignancies including lung cancer. The EMSY (c11orf30) gene has been proposed as the possible driver of the fourth core of the 11q13 amplicon and its amplification has been associated with breast and ovarian cancers. There is no report in the literature investigating the EMSY gene in lung cancer. Methods: In this study, expression levels of the EMSY and CCND1 genes were investigated in 85 patients with non small cell lung cancer by Real Time PCR. Results: Expression of the EMSY and CCND1 genes were increased in 56 (65.8%) and 50 (58.8%) of the patients, respectively. Both genes showed a higher expression in the tumors when compared to normal tissues. A strong correlation was present between the expression rates of both genes (p<0.001). Patients with adenocarcinoma had higher expression levels of both genes (p=0.02). Conclusion: We conclude that EMSY and CCND1 work in collaboration and contribute to the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Onur Baykara
- Istanbul University, Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul 34303, Turkey
| | - Nejat Dalay
- Istanbul University, Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul 34303, Turkey
| | - Burak Bakir
- Istanbul University, Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul 34303, Turkey
| | - Pelin Bulut
- Istanbul University, Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul 34303, Turkey
| | - Kamil Kaynak
- Istanbul University, Department of Chest Surgery, Cerrahpasa Medical Faculty, Istanbul 34303, Turkey
| | - Nur Buyru
- Istanbul University, Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul 34303, Turkey
| |
Collapse
|
18
|
Navazio AS, Rizzolo P, Silvestri V, Valentini V, Zelli V, Zanna I, Masala G, Bianchi S, Tommasi S, Palli D, Ottini L. EMSY copy number variation in male breast cancers characterized for BRCA1 and BRCA2 mutations. Breast Cancer Res Treat 2016; 160:181-186. [PMID: 27628328 DOI: 10.1007/s10549-016-3976-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Male breast cancer (MBC) is a rare disease that shares some similarities with female breast cancer (FBC). Like FBC, genetic susceptibility to MBC can be referred to mutations in BRCA1 and, particularly, BRCA2 genes. However, only about 10 % of MBCs are caused by BRCA1/2 germ-line mutations, while the largest part are sporadic cancers and may derive from somatic alterations. EMSY, a BRCA2 inactivating gene, emerged as a candidate gene involved in the pathogenesis of sporadic FBC, and its amplification was suggested to be the somatic counterpart of BRCA2 mutations. Considering the relevant role of BRCA2 in MBC, we aimed at investigating the role of EMSY gene copy number variations in male breast tumors. METHODS EMSY copy number variations were analyzed by quantitative real-time PCR with TaqMan probes in a selected series of 75 MBCs, characterized for BRCA1/2 mutations. RESULTS We reported EMSY amplification in 34.7 % of MBCs. A significant association emerged between EMSY amplification and BRCA1/2 mutations (p = 0.03). We identified two amplification subgroups characterized by low and high amplification levels, with BRCA2-related tumors mostly showing low EMSY amplification. CONCLUSIONS Our results show a high frequency of EMSY amplification in MBC, thus pointing to a role of EMSY in the pathogenesis of this disease. EMSY amplification may be a new feature that might uncover underlying molecular pathways of MBCs and may allow for the identification of MBC subgroups with potential clinical implication for targeted therapeutic approaches.
Collapse
Affiliation(s)
- Anna Sara Navazio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Veronica Zelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Ines Zanna
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
| | - Stefania Tommasi
- Molecular Genetics Laboratory, Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
19
|
Murata S, Zhang C, Finch N, Zhang K, Campo L, Breuer EK. Predictors and Modulators of Synthetic Lethality: An Update on PARP Inhibitors and Personalized Medicine. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2346585. [PMID: 27642590 PMCID: PMC5013223 DOI: 10.1155/2016/2346585] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have proven to be successful agents in inducing synthetic lethality in several malignancies. Several PARP inhibitors have reached clinical trial testing for treatment in different cancers, and, recently, Olaparib (AZD2281) has gained both United States Food and Drug Administration (USFDA) and the European Commission (EC) approval for use in BRCA-mutated advanced ovarian cancer treatment. The need to identify biomarkers, their interactions in DNA damage repair pathways, and their potential utility in identifying patients who are candidates for PARP inhibitor treatment is well recognized. In this review, we detail many of the biomarkers that have been investigated for their ability to predict both PARP inhibitor sensitivity and resistance in preclinical studies as well as the results of several clinical trials that have tested the safety and efficacy of different PARP inhibitor agents in BRCA and non-BRCA-mutated cancers.
Collapse
Affiliation(s)
- Stephen Murata
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Catherine Zhang
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Nathan Finch
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kevin Zhang
- Department of Otorhinolaryngology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Loredana Campo
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Eun-Kyoung Breuer
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
20
|
Zheng M, Liu J, Zhu M, Yin R, Dai J, Sun J, Shen W, Ji Y, Jin G, Ma H, Dong J, Xu L, Hu Z, Shen H. Potentially functional polymorphisms in PAK1 are associated with risk of lung cancer in a Chinese population. Cancer Med 2015; 4:1781-7. [PMID: 26377044 PMCID: PMC4674004 DOI: 10.1002/cam4.524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023] Open
Abstract
P21-activated kinase 1(PAK1) plays an important role in the regulation of cell morphogenesis, motility, mitosis, and angiogenesis and has been implicated with tumorigenesis and tumor progression. We hypothesized that functional polymorphisms in PAK1 gene may modify the risk of lung cancer. We screened four potentially functional polymorphisms (rs2154754, rs3015993, rs7109645, and rs2844337) in PAK1 gene and evaluated the association between the genetic variants and lung cancer risk in a case–control study including 1341 lung cancer cases and 1982 cancer-free controls in a Chinese population. We found that variant allele of rs2154754 was significantly associated with a decreased risk of lung cancer (OR = 0.85, 95% CI: 0.77–0.95, P = 0.004), meanwhile the result of rs3015993 was marginal (OR = 0.90, 95%CI: 0.81–1.00, P = 0.044). After multiple comparisons, rs2154754 was still significantly associated with the lung cancer risk (P < 0.0125 for Bonferroni correction). We also detected a significant interaction between rs2154754 genotypes and smoking levels on lung cancer risk (P = 0.042). Combined analysis of these two polymorphisms showed a significant allele-dosage association between the number of protective alleles and reduced risk of lung cancer (Ptrend = 0.008). These findings indicate that genetic variants in PAK1 gene may contribute to susceptibility to lung cancer in the Chinese population.
Collapse
Affiliation(s)
- Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214043, China
| | - Jia Liu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210009, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Sun
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214043, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Dong
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210009, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
21
|
López-Knowles E, Wilkerson PM, Ribas R, Anderson H, Mackay A, Ghazoui Z, Rani A, Osin P, Nerurkar A, Renshaw L, Larionov A, Miller WR, Dixon JM, Reis-Filho JS, Dunbier AK, Martin LA, Dowsett M. Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer. Breast Cancer Res 2015; 17:35. [PMID: 25888249 PMCID: PMC4406016 DOI: 10.1186/s13058-015-0532-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 02/05/2015] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach. METHODS Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n=84), gene expression profiling (n=47), matched pre- and post-AI aCGH (n=19 pairs) and Ki67-based AI-response analysis (n=39). RESULTS Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1). CONCLUSIONS These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response.
Collapse
Affiliation(s)
- Elena López-Knowles
- Royal Marsden Hospital, London, UK.
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
| | - Paul M Wilkerson
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
| | - Ricardo Ribas
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
| | - Helen Anderson
- Royal Marsden Hospital, London, UK.
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
| | - Alan Mackay
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
| | - Zara Ghazoui
- Royal Marsden Hospital, London, UK.
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
- Current affiliation: AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, UK.
| | - Aradhana Rani
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
| | | | | | | | - Alexey Larionov
- University of Edinburgh, Edinburgh, UK.
- Current affiliation: Academic Laboratory of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | | | | | - Jorge S Reis-Filho
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
- Current affiliation: Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
| | - Anita K Dunbier
- Royal Marsden Hospital, London, UK.
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
- Current affiliation: Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Lesley-Ann Martin
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
| | - Mitch Dowsett
- Royal Marsden Hospital, London, UK.
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
22
|
Madjd Z, Akbari ME, Zarnani AH, Khayamzadeh M, Kalantari E, Mojtabavi N. Expression of EMSY, a novel BRCA2-link protein, is associated with lymph node metastasis and increased tumor size in breast carcinomas. Asian Pac J Cancer Prev 2014; 15:1783-9. [PMID: 24641409 DOI: 10.7314/apjcp.2014.15.4.1783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The EMSY gene encodes a BRCA2-binding partner protein that represses the DNA repair function of BRCA2 in non-hereditary breast cancer. Although amplification of EMSY gene has been proposed to have prognostic value in breast cancer, no data have been available concerning EMSY tissue expression patterns and its associations with clinicopathological features. MATERIALS AND METHODS In the current study, we examined the expression and localization pattern of EMSY protein by immunohistochemistry and assessed its prognostic value in a well-characterized series of 116 unselected breast carcinomas with a mean follow up of 47 months using tissue microarray technique. RESULTS Immunohistochemical expression of EMSY protein was detected in 76% of primary breast tumors, localized in nuclear (18%), cytoplasmic (35%) or both cytoplasmic and nuclear sites (23%). Univariate analysis revealed a significant positive association between EMSY expression and lymph node metastasis (p value=0.045) and larger tumor size (p value=0.027), as well as a non-significant relation with increased risk of recurrence (p value=0.088), whereas no association with patients' survival (log rank test, p value=0.482), tumor grade or type was observed. CONCLUSIONS Herein, we demonstrated for the first time the immunostaining pattern of EMSY protein in breast tumors. Our data imply that EMSY protein may have impact on clinicipathological parameters and could be considered as a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Zahra Madjd
- Oncopathology Research Center and Dep pathology, Faculty of medicine, Iran University of Medical Sciences, Tehran, Iran E-mail : ,
| | | | | | | | | | | |
Collapse
|
23
|
Natrajan R, Wilkerson PM, Marchiò C, Piscuoglio S, Ng CKY, Wai P, Lambros MB, Samartzis EP, Dedes KJ, Frankum J, Bajrami I, Kopec A, Mackay A, A'hern R, Fenwick K, Kozarewa I, Hakas J, Mitsopoulos C, Hardisson D, Lord CJ, Kumar-Sinha C, Ashworth A, Weigelt B, Sapino A, Chinnaiyan AM, Maher CA, Reis-Filho JS. Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast. J Pathol 2014; 232:553-65. [PMID: 24395524 PMCID: PMC4013428 DOI: 10.1002/path.4325] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/04/2013] [Accepted: 12/29/2013] [Indexed: 12/30/2022]
Abstract
Micropapillary carcinoma (MPC) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations (CNAs) distinct from that of grade- and oestrogen receptor (ER)-matched invasive carcinomas of no special type (IC-NSTs). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray-based comparative genomic hybridization (aCGH) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs. Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC-NSTs, and recurrent mutations affecting mitogen-activated protein kinase family genes and NBPF10. RNA-sequencing analysis identified 17 high-confidence fusion genes, eight of which were validated and two of which were in-frame. No recurrent fusions were identified in an independent series of MPCs and IC-NSTs. Forced expression of in-frame fusion genes (SLC2A1-FAF1 and BCAS4-AURKA) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out-of-frame rearrangements was found in one MPC and in 13% of HER2-positive breast cancers, identified through a re-analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild-type CDK12 in a CDK12-null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found in MPCs may play a role in maintenance of a malignant phenotype and potentially offer therapeutic opportunities.
Collapse
Affiliation(s)
- Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | | | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Charlotte KY Ng
- Department of Pathology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Patty Wai
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Maryou B Lambros
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | | | | | - Jessica Frankum
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Ilirjana Bajrami
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Alicja Kopec
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Alan Mackay
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Roger A'hern
- Cancer Research UK Clinical Trials Unit, The Institute of Cancer ResearchSutton, UK
| | - Kerry Fenwick
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Iwanka Kozarewa
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Jarle Hakas
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Costas Mitsopoulos
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, Universidad Autonoma de Madrid, Hospital La Paz Institute for Health Research (IdiPAZ)Madrid, Spain
| | - Christopher J Lord
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology (MCTP), Department of Pathology, University of MichiganAnn Arbor, MI, USA
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer ResearchLondon, UK
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Anna Sapino
- Department of Medical Sciences, University of TurinTurin, Italy
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology (MCTP), Department of Pathology, University of MichiganAnn Arbor, MI, USA
| | - Christopher A Maher
- Washington University Genome Institute, Washington UniversitySt Louis, MO, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| |
Collapse
|
24
|
Hou J, Wang Z, Yang L, Guo X, Yang G. The function of EMSY in cancer development. Tumour Biol 2014; 35:5061-6. [PMID: 24609898 DOI: 10.1007/s13277-013-1584-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022] Open
Abstract
EMSY was first reported to bind BRCA2 and to inactivate the function of BRCA2, leading to the development of sporadic breast and ovarian cancers. The function of EMSY may also be involved in DNA damage repair, genomic instability, and chromatin remolding. Recent studies have shown that amplification of EMSY was also associated with other cancers such as prostate and pancreatic cancers and linked to tumor phenotypes and clinical outcomes. By reviewing literatures published since 2003, here, we have summarized the recent advances of EMSY in cancer development.
Collapse
Affiliation(s)
- Jing Hou
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|
25
|
Genomic profiling of histological special types of breast cancer. Breast Cancer Res Treat 2013; 142:257-69. [PMID: 24162157 DOI: 10.1007/s10549-013-2740-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/16/2013] [Indexed: 12/30/2022]
Abstract
Histological special types of breast cancer have distinctive morphological features and account for up to 25 % of all invasive breast cancers. We sought to determine whether at the genomic level, histological special types of breast cancer are distinct from grade- and estrogen receptor (ER)-matched invasive carcinomas of no special type (IC-NSTs), and to define genes whose expression correlates with gene copy number in histological special types of breast cancer. We characterized 59 breast cancers of ten histological special types using array-based comparative genomic hybridization (aCGH). Hierarchical clustering revealed that the patterns of gene copy number aberrations segregated with ER-status and histological grade, and that samples from each of the breast cancer histological special types preferentially clustered together. We confirmed the patterns of gene copy number aberrations previously reported for lobular, micropapillary, metaplastic, and mucinous carcinomas. On the other hand, metaplastic and medullary carcinomas were found to have genomic profiles similar to those of grade- and ER-matched IC-NSTs. The genomic aberrations observed in invasive carcinomas with osteoclast-like stromal giant cells support its classification as IC-NST variant. Integrative aCGH and gene expression analysis led to the identification of 145 transcripts that were significantly overexpressed when amplified in histological special types of breast cancer. Our results illustrate that together with histological grade and ER-status, histological type is also associated with the patterns and complexity of gene copy number aberrations in breast cancer, with adenoid cystic and mucinous carcinomas being examples of ER-negative and ER-positive breast cancers with distinctive repertoires of gene copy number aberrations.
Collapse
|
26
|
Baumgartner A. Comparative genomic hybridization (CGH) in genotoxicology. Methods Mol Biol 2013; 1044:245-268. [PMID: 23896881 DOI: 10.1007/978-1-62703-529-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the past two decades comparative genomic hybridization (CGH) and array CGH have become crucial and indispensable tools in clinical diagnostics. Initially developed for the genome-wide screening of chromosomal imbalances in tumor cells, CGH as well as array CGH have also been employed in genotoxicology and most recently in toxicogenomics. The latter methodology allows a multi-endpoint analysis of how genes and proteins react to toxic agents revealing molecular mechanisms of toxicology. This chapter provides a background on the use of CGH and array CGH in the context of genotoxicology as well as a protocol for conventional CGH to understand the basic principles of CGH. Array CGH is still cost intensive and requires suitable analytical algorithms but might become the dominating assay in the future when more companies provide a large variety of different commercial DNA arrays/chips leading to lower costs for array CGH equipment as well as consumables such as DNA chips. As the amount of data generated with microarrays exponentially grows, the demand for powerful adaptive algorithms for analysis, competent databases, as well as a sound regulatory framework will also increase. Nevertheless, chromosomal and array CGH are being demonstrated to be effective tools for investigating copy number changes/variations in the whole genome, DNA expression patterns, as well as loss of heterozygosity after a genotoxic impact. This will lead to new insights into affected genes and the underlying structures of regulatory and signaling pathways in genotoxicology and could conclusively identify yet unknown harmful toxicants.
Collapse
|
27
|
Wilkerson PM, Reis-Filho JS. the 11q13-q14 amplicon: Clinicopathological correlations and potential drivers. Genes Chromosomes Cancer 2012; 52:333-55. [DOI: 10.1002/gcc.22037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/01/2012] [Indexed: 01/04/2023] Open
|
28
|
Natrajan R, Mackay A, Wilkerson PM, Lambros MB, Wetterskog D, Arnedos M, Shiu KK, Geyer FC, Langerød A, Kreike B, Reyal F, Horlings HM, van de Vijver MJ, Palacios J, Weigelt B, Reis-Filho JS. Functional characterization of the 19q12 amplicon in grade III breast cancers. Breast Cancer Res 2012; 14:R53. [PMID: 22433433 PMCID: PMC3446387 DOI: 10.1186/bcr3154] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/04/2012] [Accepted: 03/20/2012] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The 19q12 locus is amplified in a subgroup of oestrogen receptor (ER)-negative grade III breast cancers. This amplicon comprises nine genes, including cyclin E1 (CCNE1), which has been proposed as its 'driver'. The aim of this study was to identify the genes within the 19q12 amplicon whose expression is required for the survival of cancer cells harbouring their amplification. METHODS We investigated the presence of 19q12 amplification in a series of 313 frozen primary breast cancers and 56 breast cancer cell lines using microarray comparative genomic hybridisation (aCGH). The nine genes mapping to the smallest region of amplification on 19q12 were silenced using RNA interference in phenotypically matched breast cancer cell lines with (MDA-MB-157 and HCC1569) and without (Hs578T, MCF7, MDA-MB-231, ZR75.1, JIMT1 and BT474) amplification of this locus. Genes whose silencing was selectively lethal in amplified cells were taken forward for further validation. The effects of cyclin-dependent kinase 2 (CDK2) silencing and chemical inhibition were tested in cancer cells with and without CCNE1 amplification. RESULTS 19q12 amplification was identified in 7.8% of ER-negative grade III breast cancer. Of the nine genes mapping to this amplicon, UQCRFS1, POP4, PLEKHF1, C19ORF12, CCNE1 and C19ORF2 were significantly over-expressed when amplified in primary breast cancers and/or breast cancer cell lines. Silencing of POP4, PLEKHF1, CCNE1 and TSZH3 selectively reduced cell viability in cancer cells harbouring their amplification. Cancer cells with CCNE1 amplification were shown to be dependent on CDK2 expression and kinase activity for their survival. CONCLUSIONS The 19q12 amplicon may harbour more than a single 'driver', given that expression of POP4, PLEKHF1, CCNE1 and TSZH3 is required for the survival of cancer cells displaying their amplification. The observation that cancer cells harbouring CCNE1 gene amplification are sensitive to CDK2 inhibitors provides a rationale for the testing of these chemical inhibitors in a subgroup of patients with ER-negative grade III breast cancers.
Collapse
Affiliation(s)
- Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Alan Mackay
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Maryou B Lambros
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Daniel Wetterskog
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Monica Arnedos
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Kai-Keen Shiu
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Felipe C Geyer
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Anita Langerød
- Department of Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Ullernchausèen 70, Montebello, Oslo, 0310, Norway
| | - Bas Kreike
- Institute for Radiation Oncology Arnhem, Wagnerlaan 47, Arnhem 6815 AD, The Netherlands
| | - Fabien Reyal
- Department of Surgery, Institut Curie, 26 rue d'Ulm, Paris, 75005, France
| | - Hugo M Horlings
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Marc J van de Vijver
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Jose Palacios
- Servicio de Anatomia Patologica, HHUU Virgen del Rocío, Avda. Manuel Siurot, s/n, Seville, 41013, Spain
| | - Britta Weigelt
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Jorge S Reis-Filho
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| |
Collapse
|