1
|
Xue M, Ma C, Shan H, Hou S, Kang C. SPAG5 and ASPM play important roles in gastric cancer: An observational study. Medicine (Baltimore) 2024; 103:e38499. [PMID: 38875410 PMCID: PMC11175929 DOI: 10.1097/md.0000000000038499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Gastric cancer typically originates from the abnormal proliferation of normal cells within the gastric mucosa, eventually forming tumors. The roles of sperm-associated antigen 5 (SPAG5) and abnormal spindle-like microcephaly (ASPM) associated genes in gastric cancer are not yet clear. Gastric cancer datasets GSE51575 and GSE36076 profiles were downloaded from the GPL13607 and GPL570-generated gene expression omnibus database. The analysis included filtering for differentially expressed genes, weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis, construction and analysis of the protein-protein interaction network, survival analysis, and Comparative Toxicogenomics Database analysis. Heatmaps of gene expression were also created. A total of 1457 differentially expressed genes were identified. According to gene ontology analysis, they are primarily enriched in the metabolic processes of organic acids, condensed chromosome centromere regions, and oxidoreductase activity. Kyoto Encyclopedia of Gene and Genome analysis showed they are mainly involved in metabolic pathways, P53 signaling pathway, and PPAR signaling pathway. The soft threshold power for weighted gene co-expression network analysis was set to 8. Three core genes (CENPE, SPAG5, and ASPM) were identified. Heatmaps of core gene expression revealed that SPAG5 and ASPM are highly expressed in gastric cancer samples and low in normal samples. Comparative Toxicogenomics Database analysis indicated that the core genes (CENPE, SPAG5, and ASPM) are associated with gastric tumors, gastric diseases, gastritis, gastric ulcers, tumors, inflammation, and necrosis. The SPAG5 and ASPM genes are overexpressed in gastric cancer tissues, and higher expression levels are associated with worse prognosis, may serve as potential prognostic markers.
Collapse
Affiliation(s)
- Mei Xue
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chao Ma
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - HaiFeng Shan
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Feng Z, Zhang J, Zheng Y, Liu J, Duan T, Tian T. Overexpression of abnormal spindle-like microcephaly-associated (ASPM) increases tumor aggressiveness and predicts poor outcome in patients with lung adenocarcinoma. Transl Cancer Res 2022; 10:983-997. [PMID: 35116426 PMCID: PMC8798794 DOI: 10.21037/tcr-20-2570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
Background Cumulative evidence points to abnormal spindle-like microcephaly-associated (ASPM) protein being overexpressed in various cancers, and the aberrant expression of ASPM has been shown to promote cancer tumorigenicity and progression. However, its role and clinical significance in lung adenocarcinoma (LUAD) remains unclear. This study aimed to determine the expression patterns of ASPM and its clinical significance in LUAD. Methods In total, 4 original worldwide LUAD microarray mRNA expression datasets (N=1,116) with clinical and follow-up annotations were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. The expression of ASPM protein in LUAD patients was detected by immunohistochemistry. Survival analysis and Cox regression analysis were used to examine the prognostic value of ASPM expression. Gene set enrichment analysis (GSEA) was performed to investigate the relationship between ASPM and LUAD. Results Dataset analyses and immunohistochemistry revealed that ASPM expression was significantly higher in the LUAD tissues compared with normal lung tissues, especially in the advanced tumor stage. Additionally, overexpression of ASPM was significantly correlated with shorter overall survival (OS) and relapse-free survival (RFS) in LUAD. Univariate and multivariate Cox regression analyses revealed that the overexpression of ASPM was a potential independent predictor of poor OS and RFS. However, ASPM overexpression was not significantly associated with predicting OS in lung squamous cell carcinoma. GSEA analysis demonstrated that ASPM was significantly enriched in the cell cycle, DNA replication, homologous recombination, RNA degradation, mismatch repair, and p53 signaling pathways. Conclusions These findings demonstrate the important role of ASPM in the tumorigenesis and progression of LUAD.
Collapse
Affiliation(s)
- Zhenxing Feng
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jiao Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yafang Zheng
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China
| | - Jianchao Liu
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China
| | - Tianyu Duan
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China
| | - Tieshuan Tian
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China
| |
Collapse
|
3
|
Li Y, Liu Y, Gao Z, Zhang L, Chen L, Wu Z, Liu Q, Wang S, Zhou N, Chai TC, Shi B. Single-cell transcriptomes of mouse bladder urothelium uncover novel cell type markers and urothelial differentiation characteristics. Cell Prolif 2021; 54:e13007. [PMID: 33538002 PMCID: PMC8016651 DOI: 10.1111/cpr.13007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 01/24/2021] [Indexed: 01/06/2023] Open
Abstract
Objectives Much of the information to date in terms of subtypes and function of bladder urothelial cells were derived from anatomical location or by the expression of a small number of marker genes. To have a comprehensive map of the cellular anatomy of bladder urothelial cells, we performed single‐cell RNA sequencing to thoroughly characterize mouse bladder urothelium. Materials and methods A total of 18,917 single cells from mouse bladder urothelium were analysed by unbiased single‐cell RNA sequencing. The expression of the novel cell marker was confirmed by immunofluorescence using urinary tract infection models. Results Unsupervised clustering analysis identified 8 transcriptionally distinct cell subpopulations from mouse bladder urothelial cells. We discovered a novel type of bladder urothelial cells marked by Plxna4 that may be involved with host response and wound healing. We also found a group of basal‐like cells labelled by ASPM that could be the progenitor cells of adult bladder urothelium. ASPM+ urothelial cells are significantly increased after injury by UPEC. In addition, specific transcription factors were found to be associated with urothelial cell differentiation. At the last, a number of interstitial cystitis/bladder pain syndrome–regulating genes were found differentially expressed among different urothelial cell subpopulations. Conclusions Our study provides a comprehensive characterization of bladder urothelial cells, which is fundamental to understanding the biology of bladder urothelium and associated bladder disease.
Collapse
Affiliation(s)
- Yan Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China.,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhengdong Gao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Lekai Zhang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Zonglong Wu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Qinggang Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Shuai Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Toby C Chai
- Department of Urology, Boston University/Boston Medical Center, Boston, MA, USA
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| |
Collapse
|
4
|
Wang F, Li J, Liu J, Zhao Q. Controversial role of the possible oxyntic stem cell markerASPMin gastric cancer. J Pathol 2017; 241:559-561. [PMID: 27990646 DOI: 10.1002/path.4863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 11/12/2016] [Accepted: 12/14/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Fan Wang
- Department of Gastroenterology; Zhongnan Hospital of Wuhan University; Wuhan, PR China
- Hubei Clinical Centre and Key Laboratory of Intestinal & Colorectal Diseases; Wuhan, PR China
| | - Jin Li
- Department of Gastroenterology; Zhongnan Hospital of Wuhan University; Wuhan, PR China
- Hubei Clinical Centre and Key Laboratory of Intestinal & Colorectal Diseases; Wuhan, PR China
| | - Jing Liu
- Department of Gastroenterology; Zhongnan Hospital of Wuhan University; Wuhan, PR China
- Hubei Clinical Centre and Key Laboratory of Intestinal & Colorectal Diseases; Wuhan, PR China
| | - Qiu Zhao
- Department of Gastroenterology; Zhongnan Hospital of Wuhan University; Wuhan, PR China
- Hubei Clinical Centre and Key Laboratory of Intestinal & Colorectal Diseases; Wuhan, PR China
| |
Collapse
|
5
|
Panaccione A, Zhang Y, Mi Y, Mitani Y, Yan G, Prasad ML, McDonald WH, El-Naggar AK, Yarbrough WG, Ivanov SV. Chromosomal abnormalities and molecular landscape of metastasizing mucinous salivary adenocarcinoma. Oral Oncol 2017; 66:38-45. [PMID: 28249646 DOI: 10.1016/j.oraloncology.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mucinous adenocarcinoma of the salivary gland (MAC) is a lethal cancer with unknown molecular etiology and a high propensity to lymph node metastasis. Mostly due to its orphan status, MAC remains one of the least explored cancers that lacks cell lines and mouse models that could help translational and pre-clinical studies. Surgery with or without radiation remains the only treatment modality but poor overall survival (10-year, 44%) underscores the urgent need for mechanism-based therapies. METHODS We developed the first patient-derived xenograft (PDX) model for pre-clinical MAC studies and a cell line that produces aggressively growing tumors after subcutaneous injection into nude mice. We performed cytogenetic, exome, and proteomic profiling of MAC to identify driving mutations, therapeutic targets, and pathways involved in aggressive cancers based on TCGA database mining and GEO analysis. RESULTS We identified in MAC KRAS (G13D) and TP53 (R213X) mutations that have been previously reported as drivers in a variety of highly aggressive cancers. Somatic mutations were also found in KDM6A, KMT2D, and other genes frequently mutated in colorectal and other cancers: FAT1, NBEA, RELN, RLP1B, and ZFHX3. Proteomic analysis of MAC implied epigenetic up-regulation of a genetic program involved in proliferation and cancer stem cell maintenance. CONCLUSION Genomic and proteomic analyses provided the first insight into potential molecular drivers of MAC metastases pointing at common mechanisms of CSC propagation in aggressive cancers. The in vitro/in vivo models that we created should aid in the development and validation of new treatment strategies against MAC.
Collapse
Affiliation(s)
- Alex Panaccione
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA
| | - Yi Zhang
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA
| | - Yanfang Mi
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Guo Yan
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Manju L Prasad
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wendell G Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA; H&N Disease Center, Smilow Cancer Hospital, New Haven, CT, USA; Molecular Virology Program, Yale Cancer Center, New Haven, CT, USA
| | - Sergey V Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06519, USA.
| |
Collapse
|
6
|
Merker SR, Weitz J, Stange DE. Gastrointestinal organoids: How they gut it out. Dev Biol 2016; 420:239-250. [PMID: 27521455 DOI: 10.1016/j.ydbio.2016.08.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract is characterized by a self-renewing epithelium fueled by adult stem cells residing at the bottom of the intestinal crypt and gastric glands. Their activity and proliferation is strongly dependent on complex signaling pathways involving other crypt/gland cells as well as surrounding stromal cells. In recent years organoids are becoming increasingly popular as a new and powerful tool to study developmental or other biological processes. Organoids retain morphological and molecular patterns of the tissue they are derived from, are self-organizing, relatively simple to handle and accessible to genetic engineering. This review focuses on the developmental processes and signaling molecules involved in epithelial homeostasis and how a profound knowledge of these mechanisms allowed the establishment of a three dimensional organoid culture derived from adult gastrointestinal stem cells.
Collapse
Affiliation(s)
- Sebastian R Merker
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Daniel E Stange
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|