1
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Zhang D, Singh B, Moerland J, Mitchell O, Lockwood L, Carapellucci S, Sridhar S, Liby KT. Sustained, local delivery of the PARP inhibitor talazoparib prevents the development of mammary gland hyperplasia in Brca1-deficient mice. Sci Rep 2021; 11:1234. [PMID: 33441637 PMCID: PMC7806744 DOI: 10.1038/s41598-020-79663-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/08/2020] [Indexed: 02/01/2023] Open
Abstract
Mutations in BRCA genes are the leading cause of hereditary breast cancer. Current options to prevent cancer in these high-risk patients, such as anti-estrogen drugs and radical mastectomy, are limited by lack of efficacy, undesirable toxicities, or physical and emotional challenges. We have previously shown that PARP inhibitors can significantly delay tumor development in BRCA1-deficient mice. Here, we fabricated the PARP inhibitor talazoparib (TLZ) into spacer implants (InCeT-TLZ) for localized and sustained delivery. We hypothesized that this novel formulation will provide an effective chemopreventive strategy with minimal toxicity. TLZ was released gradually over 30 days as implants degraded. InCeT-TLZ significantly decreased proliferation and increased DNA damage in the mammary glands of BRCA1-deficient mice. Notably, the number of mice that developed hyperplasia in the mammary glands was significantly lower with InCeT-TLZ treatment compared to the control group. Meanwhile, InCeT-TLZ was also better tolerated than oral TLZ, without loss of body weight or anemia. This study provides proof of concept for a novel and safe chemopreventive strategy using localized delivery of a PARP inhibitor for high-risk individuals. Future studies will directly evaluate the effects of InCeT-TLZ for preventing tumor development.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Bijay Singh
- Theranano LLC, 41 Esty Farm Road, Newton, MA, 02459, USA
- Northeastern University, Boston, MA, USA
| | - Jessica Moerland
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Owen Mitchell
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Lizbeth Lockwood
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Sarah Carapellucci
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Srinivas Sridhar
- Theranano LLC, 41 Esty Farm Road, Newton, MA, 02459, USA.
- Northeastern University, Boston, MA, USA.
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
van de Ven M, Liu X, van der Burg E, Klarenbeek S, Alexi X, Zwart W, Dijcks F, Bouwman P, Jonkers J. BRCA1-associated mammary tumorigenesis is dependent on estrogen rather than progesterone signaling. J Pathol 2018; 246:41-53. [PMID: 29877575 DOI: 10.1002/path.5105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022]
Abstract
Hereditary breast cancers in BRCA1 mutation carriers are mostly estrogen receptor α (ERα)-negative and progesterone receptor (PR)-negative; however, hormone depletion via bilateral oophorectomy does result in a marked reduction in breast cancer risk, suggesting that BRCA1-associated breast tumorigenesis is dependent on hormone signaling. We used geneticaly engineered mouse models to determine the individual influences of ERα and PR signaling on the development of BRCA1-deficient breast cancer. In line with the human data, BRCA1-deficient mouse mammary tumors are ERα-negative, and bilateral ovariectomy leads to abrogation of mammary tumor development. Hormonal replacement experiments in ovariectomized mice showed that BRCA1-deficient mammary tumor formation is promoted by estrogen but not by progesterone. In line with these data, mammary tumorigenesis was significantly delayed by the selective ERα downregulator fulvestrant, but not by the selective PR antagonist Org33628. Together, our results illustrate that BRCA1-associated tumorigenesis is dependent on estrogen signaling rather than on progesterone signaling, and call into question the utility of PR antagonists as a tumor prevention strategy for BRCA1 mutation carriers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marieke van de Ven
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xiaoling Liu
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xanthippi Alexi
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred Dijcks
- Synthon Biopharmaceuticals B.V, Nijmegen, The Netherlands
| | - Peter Bouwman
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|