1
|
Bekers E, van Bladel DAG, Berendsen MR, Eijkelenboom A, van Krieken JHJM, Ooft M, Ruijter E, Verhagen A, Flucke UE, Scheijen B. Detection of PRKAR1A gene mutations in sporadic cardiac myxomas: a study of 24 cases. Virchows Arch 2025; 486:511-519. [PMID: 39966109 PMCID: PMC11950028 DOI: 10.1007/s00428-025-04049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/30/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The benign neoplasm cardiac myxoma represents one of the hallmarks of Carney complex (CNC), a familial multiple neoplasia syndrome. About 80% of the index cases have germline mutations in PRKAR1A encoding the RIα regulatory subunit of cAMP-dependent protein kinase A (PKA). However, the role of PRKAR1A gene mutations in the pathogenesis of non-CNC-associated sporadic cardiac myxoma is less well established. Here, we investigated the presence of PRKAR1A gene variants in a cohort of 24 sporadic cardiac myxomas using targeted next-generation sequencing. Our study shows that 14 out of 24 cases (58%) harbor PRKAR1A gene mutations, represented mostly by frameshift, nonsense, and splice site mutations (together 84%), leading to a premature stop codon predicted to be degraded via non-sense mediated mRNA decay. The other 16% of PRKAR1A genetic alterations involved missense mutations, often located in important functional domains of the regulatory subunit RIα. Notably, 64% (n = 9/14) of the cases harbored more than one PRKAR1A gene variant, suggesting compound heterozygous mutations either in cis or trans. In conclusion, PRKAR1A gene mutations associated with loss of RIα function leading to increased PKA activity were observed in ~ 60% of sporadic cardiac myxomas, strongly supporting an essential role for PKA in mediating formation of cardiac myxoma.
Collapse
Affiliation(s)
- Elise Bekers
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Diede A G van Bladel
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madeleine R Berendsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Astrid Eijkelenboom
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Han J M van Krieken
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc Ooft
- Pathology-DNA, Rijnstate Hospital, Arnhem, The Netherlands
| | - Emiel Ruijter
- Pathology-DNA, Rijnstate Hospital, Arnhem, The Netherlands
| | - Ad Verhagen
- Department of Cardio Thoracic Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Uta E Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Zimpfer A, Abel LM, Alozie A, Etz CD, Schneider B. Frequent protein kinase A regulatory subunit A1 mutations but no GNAS mutations as potential driver in sporadic cardiac myxomas. Cardiovasc Pathol 2024; 71:107632. [PMID: 38492686 DOI: 10.1016/j.carpath.2024.107632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
PURPOSE Cardiac myxomas (CMs) are the second most common benign primary cardiac tumors, mainly originating within the left atrium. Approximately 5% of CM cases are associated with Carney Complex (CNC), an autosomal dominant multiple neoplasia syndrome often caused by germline mutations in the protein kinase A regulatory subunit 1A (PRKAR1A). Data concerning PRKAR1A alterations in sporadic myxomas are variable and sparse, with PRKAR1A mutations reported to range from 0% to 87%. Therefore, we investigated the frequency of PRKAR1A mutations in sporadic CM using next-generation sequencing (NGS). Additionally, we explored mutations in the catalytic domain of the Protein Kinase A complex (PRKACA) and examined the presence of GNAS mutations as another potential driver. METHODS AND RESULTS This study retrospectively collected histological and clinical data from 27 patients with CM. First, we ruled out the possibility of underlying CNC through clinical evaluations and standardized interviews for each patient. Second, we performed PRKAR1A immunohistochemistry (IHC) analysis and graded the reactivity of myxoma cells semi-quantitatively. NGS was then applied to analyze the coding regions of PRKAR1A, PRKACA, and GNAS in all 27 cases. Of the 27 sporadic CM cases, 13 (48%) harbored mutations in PRKAR1A. Among these 13 mutant cases, six displayed more than one mutation in PRKAR1A. Most of the identified mutations resulted in premature stop codons or affected splicing. In PRKAR1A mutant CM cases, the loss of PRKAR1A protein expression was significantly more common. In two cases with missense mutations, protein expression remained preserved. Furthermore, a single mutation was detected in the catalytic domain of the protein kinase A complex, while no GNAS mutations were found. CONCLUSION We identified a relatively high frequency of PRKAR1A mutations in sporadic CM. These PRKAR1A mutations may also represent an important oncogenic mechanism in sporadic myxomas, as already known in CM cases associated with CNC.
Collapse
Affiliation(s)
- Annette Zimpfer
- Institute of Pathology, University Medical Center Rostock, Strempelstr. 14, Rostock, 18055 Germany.
| | - Liza M Abel
- Institute of Pathology, University Medical Center Rostock, Strempelstr. 14, Rostock, 18055 Germany
| | - Anthony Alozie
- Department of Cardiac Surgery, Rostock Heart Center, University Medical Center Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Christian D Etz
- Department of Cardiac Surgery, Rostock Heart Center, University Medical Center Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, University Medical Center Rostock, Strempelstr. 14, Rostock, 18055 Germany
| |
Collapse
|
3
|
Glebov-McCloud AGP, Saide WS, Gaine ME, Strack S. Protein Kinase A in neurological disorders. J Neurodev Disord 2024; 16:9. [PMID: 38481146 PMCID: PMC10936040 DOI: 10.1186/s11689-024-09525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Cyclic adenosine 3', 5' monophosphate (cAMP)-dependent Protein Kinase A (PKA) is a multi-functional serine/threonine kinase that regulates a wide variety of physiological processes including gene transcription, metabolism, and synaptic plasticity. Genomic sequencing studies have identified both germline and somatic variants of the catalytic and regulatory subunits of PKA in patients with metabolic and neurodevelopmental disorders. In this review we discuss the classical cAMP/PKA signaling pathway and the disease phenotypes that result from PKA variants. This review highlights distinct isoform-specific cognitive deficits that occur in both PKA catalytic and regulatory subunits, and how tissue-specific distribution of these isoforms may contribute to neurodevelopmental disorders in comparison to more generalized endocrine dysfunction.
Collapse
Affiliation(s)
- Alexander G P Glebov-McCloud
- Department of Neuroscience and Pharmacology, Bowen Science Building, University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Walter S Saide
- Department of Neuroscience and Pharmacology, Bowen Science Building, University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy Building, College of Pharmacy, University of Iowa, 180 S. Grand Ave, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, Intellectual and Developmental Disabilities Research Center, Iowa City, IA, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, Bowen Science Building, University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, Intellectual and Developmental Disabilities Research Center, Iowa City, IA, USA.
| |
Collapse
|
4
|
McGlacken-Byrne SM, Abdelmaksoud A, Haini M, Palm L, Ashworth M, Li J, Wang W, Wang X, Wang J, Callaghan B, Kinsler VA, Faravelli F, Dattani MT. Mosaic PRKACA duplication causing a novel and distinct phenotype of early-onset Cushing's syndrome and acral cutaneous mucinosis. Eur J Endocrinol 2022; 187:K55-K61. [PMID: 36691942 DOI: 10.1530/eje-22-0287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE STATEMENT We describe a mosaic PRKACA duplication in a young infant who presented with a Carney-like complex: bilateral non-pigmented micronodular adrenal hyperplasia, severe early-onset Cushing's syndrome, and distinct acral soft tissue overgrowth due to cutaneous mucinosis. This represents a novel manifestation of PRKACA disruption and broadens the extra-adrenal phenotype of PRKACA-associated Cushing's syndrome. Our data suggest that Cushing's syndrome phenotypes arising from somatic and germline PRKACA abnormalities can exist on a spectrum. We emphasise the value of ascertaining a genetic diagnosis for PRKACA-mediated adrenal and extra-adrenal disease to guide individualised and targeted care.
Collapse
Affiliation(s)
- Sinéad M McGlacken-Byrne
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London, UK
| | - Ashraf Abdelmaksoud
- International and Private Patient Department, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Mohammad Haini
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Liina Palm
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Michael Ashworth
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Wang
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bridget Callaghan
- International and Private Patient Department, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Veronica A Kinsler
- Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London, UK
- Department of Dermatology, Great Ormond Street Hospital for Children, London, UK
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, UK
| | - Francesca Faravelli
- North East Thames Regional Genetic Service, Great Ormond Street Hospital, London, UK
| | - Mehul T Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
5
|
Luo B, Lin J, Cai W, Wang M. Identification of the Pyroptosis-Related Gene Signature and Risk Score Model for Colon Adenocarcinoma. Front Genet 2021; 12:771847. [PMID: 34938319 PMCID: PMC8686197 DOI: 10.3389/fgene.2021.771847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 01/10/2023] Open
Abstract
The prognosis of advanced colon adenocarcinoma (COAD) remains poor. However, existing methods are still difficult to assess patient prognosis. Pyroptosis, a lytic and inflammatory process of programmed cell death caused by the gasdermin protein, is involved in the development and progression of various tumors. Moreover, there are no related studies using pyroptosis-related genes to construct a model to predict the prognosis of COAD patients. Thus, in this study, bioinformatics methods were used to analyze the data of COAD patients downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to construct a risk model for the patient prognosis. TCGA database was used as the training set, and GSE39582 downloaded from GEO was used as the validation set. A total of 24 pyroptosis-related genes shown significantly different expression between normal and tumor tissues in COAD and seven genes (CASP4, CASP5, CASP9, IL6, NOD1, PJVK, and PRKACA) screened by univariate and LASSO cox regression analysis were used to construct the risk model. The receiver operating characteristic (ROC) and Kaplan–Meier (K–M curves) curves showed that the model based on pyroptosis-related genes can be used to predict the prognosis of COAD and can be validated by the external cohort well. Then, the clinicopathological factors were combined with the risk score to establish a nomogram with a C-index of 0.774. In addition, tissue validation results also showed that CASP4, CASP5, PRKACA, and NOD1 were differentially expressed between tumor and normal tissues from COAD patients. In conclusion, the risk model based on the pyroptosis-related gene can be used to assess the prognosis of COAD patients well, and the related genes may become the potential targets for treatment.
Collapse
Affiliation(s)
- Bixian Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Liu Y, Xia P, Chen J, Bandettini WP, Kirschner LS, Stratakis CA, Cheng Z. PRKAR1A deficiency impedes hypertrophy and reduces heart size. Physiol Rep 2021; 8:e14405. [PMID: 32212257 PMCID: PMC7093752 DOI: 10.14814/phy2.14405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Protein kinase A (PKA) activity is pivotal for proper functioning of the human heart, and its dysregulation has been implicated in a variety of cardiac pathologies. PKA regulatory subunit 1α (R1α, encoded by the PRKAR1A gene) is highly expressed in the heart, and controls PKA kinase activity by sequestering PKA catalytic subunits. Patients with PRKAR1A mutations are often diagnosed with Carney complex (CNC) in early adulthood, and may die later in life from cardiac complications such as heart failure. However, it remains unknown whether PRKAR1A deficiency interferes with normal heart development. Here, we showed that left ventricular mass was reduced in young CNC patients with PRKAR1A mutations or deletions. Cardiac-specific heterozygous ablation of PRKAR1A in mice increased cardiac PKA activity, and reduced heart weight and cardiomyocyte size without altering contractile function at 3 months of age. Silencing of PRKAR1A, or stimulation with the PKA activator forskolin completely abolished α1-adrenergic receptor-mediated cardiomyocyte hypertrophy. Mechanistically, depletion of PRKAR1A provoked PKA-dependent inactivating phosphorylation of Drp1 at S637, leading to impaired mitochondrial fission. Pharmacologic inhibition of Drp1 with Mdivi 1 diminished hypertrophic growth of cardiomyocytes. In conclusion, PRKAR1A deficiency suppresses cardiomyocyte hypertrophy and impedes heart growth, likely through inhibiting Drp1-mediated mitochondrial fission. These findings provide a potential novel mechanism for the cardiac manifestations associated with CNC.
Collapse
Affiliation(s)
- Yuening Liu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Peng Xia
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - W Patricia Bandettini
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, NIH-Clinical Research Center, Bethesda, MD, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
7
|
Kamilaris CDC, Stratakis CA, Hannah-Shmouni F. Molecular Genetic and Genomic Alterations in Cushing's Syndrome and Primary Aldosteronism. Front Endocrinol (Lausanne) 2021; 12:632543. [PMID: 33776926 PMCID: PMC7994620 DOI: 10.3389/fendo.2021.632543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The genetic alterations that cause the development of glucocorticoid and/or mineralocorticoid producing benign adrenocortical tumors and hyperplasias have largely been elucidated over the past two decades through advances in genomics. In benign aldosterone-producing adrenocortical tumors and hyperplasias, alteration of intracellular calcium signaling has been found to be significant in aldosterone hypersecretion, with causative defects including those in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, and CLCN2. In benign cortisol-producing adrenocortical tumors and hyperplasias abnormal cyclic adenosine monophosphate-protein kinase A signaling has been found to play a central role in tumorigenesis, with pathogenic variants in GNAS, PRKAR1A, PRKACA, PRKACB, PDE11A, and PDE8B being implicated. The role of this signaling pathway in the development of Cushing's syndrome and adrenocortical tumors was initially discovered through the study of the underlying genetic defects causing the rare multiple endocrine neoplasia syndromes McCune-Albright syndrome and Carney complex with subsequent identification of defects in genes affecting the cyclic adenosine monophosphate-protein kinase A pathway in sporadic tumors. Additionally, germline pathogenic variants in ARMC5, a putative tumor suppressor, were found to be a cause of cortisol-producing primary bilateral macronodular adrenal hyperplasia. This review describes the genetic causes of benign cortisol- and aldosterone-producing adrenocortical tumors.
Collapse
Affiliation(s)
| | | | - Fady Hannah-Shmouni
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
8
|
Palencia-Campos A, Aoto PC, Machal EMF, Rivera-Barahona A, Soto-Bielicka P, Bertinetti D, Baker B, Vu L, Piceci-Sparascio F, Torrente I, Boudin E, Peeters S, Van Hul W, Huber C, Bonneau D, Hildebrand MS, Coleman M, Bahlo M, Bennett MF, Schneider AL, Scheffer IE, Kibæk M, Kristiansen BS, Issa MY, Mehrez MI, Ismail S, Tenorio J, Li G, Skålhegg BS, Otaify GA, Temtamy S, Aglan M, Jønch AE, De Luca A, Mortier G, Cormier-Daire V, Ziegler A, Wallis M, Lapunzina P, Herberg FW, Taylor SS, Ruiz-Perez VL. Germline and Mosaic Variants in PRKACA and PRKACB Cause a Multiple Congenital Malformation Syndrome. Am J Hum Genet 2020; 107:977-988. [PMID: 33058759 DOI: 10.1016/j.ajhg.2020.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
PRKACA and PRKACB code for two catalytic subunits (Cα and Cβ) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cβ subunits of PKA during human development.
Collapse
Affiliation(s)
- Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Phillip C Aoto
- Department of Pharmacology, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA
| | - Erik M F Machal
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, 34132, Germany
| | - Ana Rivera-Barahona
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Patricia Soto-Bielicka
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, 28029, Spain
| | - Daniela Bertinetti
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, 34132, Germany
| | - Blaine Baker
- Department of Pharmacology, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA
| | - Lily Vu
- Department of Pharmacology, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA
| | - Francesca Piceci-Sparascio
- Medical Genetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, San Giovanni Rotondo, 71013, Italy
| | - Isabella Torrente
- Medical Genetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, San Giovanni Rotondo, 71013, Italy
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Edegem, 2650, Belgium
| | - Silke Peeters
- Department of Medical Genetics, University of Antwerp, Edegem, 2650, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Edegem, 2650, Belgium
| | - Celine Huber
- Clinical Genetics and Reference Center for Skeletal Dysplasia, AP-HP, Necker-Enfants Malades Hospital, Paris, 75015, France; Université De Paris, INSERM UMR1163, Institut Imagine, Paris, 75015, France
| | - Dominique Bonneau
- Biochemistry and Genetics Department, Angers Hospital, Angers Cedex 9, 49933, France; UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers Cedex 9, 49933, France
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia; Murdoch Children's Research Institute, Parkville, 3052, Victoria, Australia
| | - Matthew Coleman
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia; Murdoch Children's Research Institute, Parkville, 3052, Victoria, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Mark F Bennett
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia; Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, 3084, Victoria, Australia; Murdoch Children's Research Institute, Parkville, 3052, Victoria, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, and Florey Institute of Neuroscience and Mental Health, Parkville, 3052, Victoria, Australia
| | - Maria Kibæk
- Children's Hospital of H.C. Andersen, Odense University Hospital, 5000 Odense, Denmark
| | - Britta S Kristiansen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Mahmoud Y Issa
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Mennat I Mehrez
- Department of Oro-dental Genetics, Division of Human Genetics and Genome Research. Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Samira Ismail
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Jair Tenorio
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain; Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, 28046, Spain; ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability
| | - Gaoyang Li
- Division for Molecular Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, 0316, Norway
| | - Bjørn Steen Skålhegg
- Division for Molecular Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, 0316, Norway
| | - Ghada A Otaify
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Samia Temtamy
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Mona Aglan
- Department of Clinical Genetics, Division of Human Genetics and Genome Research, Center of Excellence for Human Genetics, National Research Centre, Cairo, 12622, Egypt
| | - Aia E Jønch
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Alessandro De Luca
- Medical Genetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, San Giovanni Rotondo, 71013, Italy
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp, Edegem, 2650, Belgium; Antwerp University Hospital, Edegem, 2650, Belgium
| | - Valérie Cormier-Daire
- Clinical Genetics and Reference Center for Skeletal Dysplasia, AP-HP, Necker-Enfants Malades Hospital, Paris, 75015, France; Université De Paris, INSERM UMR1163, Institut Imagine, Paris, 75015, France
| | - Alban Ziegler
- Biochemistry and Genetics Department, Angers Hospital, Angers Cedex 9, 49933, France; UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers Cedex 9, 49933, France
| | - Mathew Wallis
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7001, Australia; Clinical Genetics Service, Austin Health, Heidelberg, 3084, Victoria, Australia
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain; Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, 28046, Spain; ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability
| | - Friedrich W Herberg
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, 34132, Germany
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA; Department of Chemistry and Biochemistry, University of California, San Diego, 9400 Gilman Drive, La Jolla, CA 92093-0654, USA
| | - Victor L Ruiz-Perez
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain; Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, 28046, Spain; ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability.
| |
Collapse
|
9
|
Corrêa T, Poswar F, Feltes BC, Riegel M. Candidate Genes Associated With Neurological Findings in a Patient With Trisomy 4p16.3 and Monosomy 5p15.2. Front Genet 2020; 11:561. [PMID: 32625234 PMCID: PMC7311770 DOI: 10.3389/fgene.2020.00561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
In this report, we present a patient with brain alterations and dysmorphic features associated with chromosome duplication seen in 4p16.3 region and chromosomal deletion in a critical region responsible for Cri-du-chat syndrome (CdCS). Chromosomal microarray analysis (CMA) revealed a 41.1 Mb duplication encompassing the band region 4p16.3-p13, and a 14.7 Mb deletion located between the bands 5p15.33 and p15.1. The patient's clinical findings overlap with previously reported cases of chromosome 4p duplication syndrome and CdCS. The patient's symptoms are notably similar to those of CdCS patients as she presented with a weak, high-pitched voice and showed a similar pathogenicity observed in the brain MRI. These contiguous gene syndromes present with distinct clinical manifestations. However, the phenotypic and cytogenetic variability in affected individuals, such as the low frequency and the large genomic regions that can be altered, make it challenging to identify candidate genes that contribute to the pathogenesis of these syndromes. Therefore, systems biology and CMA techniques were used to investigate the extent of chromosome rearrangement on critical regions in our patient's phenotype. We identified the candidate genes PPARGC1A, CTBP1, TRIO, TERT, and CCT5 that are associated with the neuropsychomotor delay, microcephaly, and neurological alterations found in our patient. Through investigating pathways that associate with essential nodes in the protein interaction network, we discovered proteins involved in cellular differentiation and proliferation, as well as proteins involved in the formation and disposition of the cytoskeleton. The combination of our cytogenomic and bioinformatic analysis provided these possible explanations for the unique clinical phenotype, which has not yet been described in scientific literature.
Collapse
Affiliation(s)
- Thiago Corrêa
- Post-Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruno César Feltes
- Department of Theoritical Informatics, Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariluce Riegel
- Post-Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
10
|
|
11
|
Walker C, Wang Y, Olivieri C, Karamafrooz A, Casby J, Bathon K, Calebiro D, Gao J, Bernlohr DA, Taylor SS, Veglia G. Cushing's syndrome driver mutation disrupts protein kinase A allosteric network, altering both regulation and substrate specificity. SCIENCE ADVANCES 2019; 5:eaaw9298. [PMID: 31489371 PMCID: PMC6713507 DOI: 10.1126/sciadv.aaw9298] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/16/2019] [Indexed: 05/05/2023]
Abstract
Genetic alterations in the PRKACA gene coding for the catalytic α subunit of the cAMP-dependent protein kinase A (PKA-C) are linked to cortisol-secreting adrenocortical adenomas, resulting in Cushing's syndrome. Among those, a single mutation (L205R) has been found in up to 67% of patients. Because the x-ray structures of the wild-type and mutant kinases are essentially identical, the mechanism explaining aberrant function of this mutant remains under active debate. Using NMR spectroscopy, thermodynamics, kinetic assays, and molecular dynamics simulations, we found that this single mutation causes global changes in the enzyme, disrupting the intramolecular allosteric network and eliciting losses in nucleotide/pseudo-substrate binding cooperativity. Remarkably, by rewiring its internal allosteric network, PKA-CL205R is able to bind and phosphorylate non-canonical substrates, explaining its changes in substrate specificity. Both the lack of regulation and change in substrate specificity reveal the complex role of this mutated kinase in the formation of cortisol-secreting adrenocortical adenomas.
Collapse
Affiliation(s)
- Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingjie Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adak Karamafrooz
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jordan Casby
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kerstin Bathon
- Institute for Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
- Shenzhen Bay Laboratory and Laboratory of Computational Chemistry and Drug Design, Peking University Graduate School, Shenzhen 518055, China
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan S. Taylor
- Departments of Chemistry and Biochemistry and Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Stratakis CA. Cyclic AMP-dependent protein kinase catalytic subunit A (PRKACA): the expected, the unexpected, and what might be next. J Pathol 2018; 244:257-259. [PMID: 29205368 DOI: 10.1002/path.5014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/10/2017] [Indexed: 12/23/2022]
Abstract
Protein kinase A (PKA) or cyclic-AMP (cAMP)-dependent kinase was among the first serine-threonine kinases to be molecularly and functionally characterized. For years, it was investigated as the enzyme that mediates cAMP functions in almost all cell systems and organisms studied to date. Despite PKA's critical role in signaling and the long history of investigations of cAMP in oncogenesis (dating back to the 1970s), it was not until relatively recently that PKA defects were found to be directly involved in tumor predisposition. First, PKA's main regulatory subunit, PRKAR1A, was found to be mutated in Carney complex, a genetic syndrome that predisposes to heart tumors (cardiac myxomas) and a variety of other lesions of the endocrine system, including the adrenal cortex, and several cancers, including liver carcinoma. Then, PKA's main catalytic subunit, PRKACA, was found to be mutated in sporadic adrenal tumors and fibrolamellar liver carcinoma. Not surprisingly, therefore, a new research study published in The Journal of Pathology showed PRKACA mutations in sporadic cardiac myxomas. The real question is what other pathologies will be found to be due to PRKACA (or other PKA subunit) defects. The possibilities abound and may show the way for a totally new class of medications that target cAMP signaling to be useful in fighting the corresponding tumors. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Constantine A Stratakis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH and Section on Endocrinology and Genetics (SEGEN), NICHD, NIH, Bethesda, USA
| |
Collapse
|