1
|
Thakur S, Haider S, Natrajan R. Implications of tumour heterogeneity on cancer evolution and therapy resistance: lessons from breast cancer. J Pathol 2023; 260:621-636. [PMID: 37587096 DOI: 10.1002/path.6158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023]
Abstract
Tumour heterogeneity is pervasive amongst many cancers and leads to disease progression, and therapy resistance. In this review, using breast cancer as an exemplar, we focus on the recent advances in understanding the interplay between tumour cells and their microenvironment using single cell sequencing and digital spatial profiling technologies. Further, we discuss the utility of lineage tracing methodologies in pre-clinical models of breast cancer, and how these are being used to unravel new therapeutic vulnerabilities and reveal biomarkers of breast cancer progression. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shefali Thakur
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
2
|
Wei L, Li H, Xiao M, Zhou C, Liu J, Weng S, Wei R. CCNF is a potential pancancer biomarker and immunotherapy target. Front Oncol 2023; 13:1109378. [PMID: 37168372 PMCID: PMC10164972 DOI: 10.3389/fonc.2023.1109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Background CCNF catalyzes the transfer of ubiquitin molecules from E2 ubiquitin-conjugating enzymes to target proteins, thereby regulating the G1/S or G2/M transition of tumor cells. Thus far, CCNF expression and its potential as a pancancer biomarker and immunotherapy target have not been reported. Methods TCGA datasets and the R language were used to analyze the pancancer gene expression, protein expression, and methylation levels of CCNF; the relationship of CCNF expression with overall survival (OS), recurrence-free survival (RFS), immune matrix scores, sex and race; and the mechanisms for posttranscriptional regulation of CCNF. Results CCNF expression analysis showed that CCNF mRNA expression was higher in cancer tissues than in normal tissues in the BRCA, CHOL, COAD, ESCA, HNSC, LUAD, LUSC, READ, STAD, and UCEC; CCNF protein expression was also high in many cancer tissues, indicating that it could be an important predictive factor for OS and RFS. CCNF overexpression may be caused by CCNF hypomethylation. CCNF expression was also found to be significantly different between patients grouped based on sex and race. Overexpression of CCNF reduces immune and stromal cell infiltration in many cancers. Posttranscriptional regulation analysis showed that miR-98-5p negatively regulates the expression of the CCNF gene. Conclusion CCNF is overexpressed across cancers and is an adverse prognostic factor in terms of OS and RFS in many cancers; this phenomenon may be related to hypomethylation of the CCNF gene, which could lead to cancer progression and worsen prognosis. In addition, CCNF expression patterns were significantly different among patients grouped by sex and race. Its overexpression reduces immune and stromal cell infiltration. miR-98-5p negatively regulates CCNF gene expression. Hence, CCNF is a potential pancancer biomarker and immunotherapy target.
Collapse
Affiliation(s)
- Lifang Wei
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huiming Li
- Department of Preventive Medicine, Medical School of Yichun University, Yichun, China
| | - Mengjun Xiao
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
| | - Cuiling Zhou
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
| | - Jiliang Liu
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
| | - Shilian Weng
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
- *Correspondence: Ruda Wei, ; Shilian Weng,
| | - Ruda Wei
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
- *Correspondence: Ruda Wei, ; Shilian Weng,
| |
Collapse
|
3
|
Zhu L, Miao Y, Xi F, Jiang P, Xiao L, Jin X, Fang M. Identification of Potential Biomarkers for Pan-Cancer Diagnosis and Prognosis Through the Integration of Large-Scale Transcriptomic Data. Front Pharmacol 2022; 13:870660. [PMID: 35677427 PMCID: PMC9169228 DOI: 10.3389/fphar.2022.870660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, bringing a significant burden to human health and society. Accurate cancer diagnosis and biomarkers that can be used as robust therapeutic targets are of great importance as they facilitate early and effective therapies. Shared etiology among cancers suggests the existence of pan-cancer biomarkers, performance of which could benefit from the large sample size and the heterogeneity of the studied patients. In this study, we conducted a systematic RNA-seq study of 9,213 tumors and 723 para-cancerous tissue samples of 28 solid tumors from the Cancer Genome Atlas (TCGA) database, and 7,008 normal tissue samples from the Genotype-Tissue Expression (GTEx) database. By differential gene expression analysis, we identified 214 up-regulated and 186 downregulated differentially expressed genes (DEGs) in more than 80% of the studied tumors, respectively, and obtained 20 highly linked up- and downregulated hub genes from them. These markers have rarely been reported in multiple tumors simultaneously. We further constructed pan-cancer diagnostic models to classify tumors and para-cancerous tissues using 10 up-regulated hub genes with an AUC of 0.894. Survival analysis revealed that these hub genes were significantly associated with the overall survival of cancer patients. In addition, drug sensitivity predictions for these hub genes in a variety of tumors obtained several broad-spectrum anti-cancer drugs targeting pan-cancer. Furthermore, we predicted immunotherapy sensitivity for cancers based on tumor mutational burden (TMB) and the expression of immune checkpoint genes (ICGs), providing a theoretical basis for the treatment of tumors. In summary, we identified a set of biomarkers that were differentially expressed in multiple types of cancers, and these biomarkers can be potentially used for diagnosis and used as therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,BGI-Shenzhen, Shenzhen, China
| | - Yu Miao
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Xi
- BGI-Shenzhen, Shenzhen, China
| | | | - Liang Xiao
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,BGI-Shenzhen, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Mingyan Fang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
4
|
Wilson BC, Eu D. Optical Spectroscopy and Imaging in Surgical Management of Cancer Patients. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Brian C. Wilson
- Princess Margaret Cancer Centre/University Health Network 101 College Street Toronto Ontario Canada
- Department of Medical Biophysics, Faculty of Medicine University of Toronto Canada
| | - Donovan Eu
- Department of Otolaryngology‐Head and Neck Surgery‐Surgical Oncology, Princess Margaret Cancer Centre/University Health Network University of Toronto Canada
- Department of Otolaryngology‐Head and Neck Surgery National University Hospital System Singapore
| |
Collapse
|
5
|
Sun D, Gan X, Liu L, Yang Y, Ding D, Li W, Jiang J, Ding W, Zhao L, Hou G, Yu J, Wang J, Yang F, Yuan S, Zhou W. DNA hypermethylation modification promotes the development of hepatocellular carcinoma by depressing the tumor suppressor gene ZNF334. Cell Death Dis 2022; 13:446. [PMID: 35534462 PMCID: PMC9085879 DOI: 10.1038/s41419-022-04895-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
DNA methylation plays a pivotal role in the development and progression of tumors. However, studies focused on the dynamic changes of DNA methylation in the development of hepatocellular carcinoma (HCC) are rare. To systematically illustrate the dynamic DNA methylation alternation from premalignant to early-stage liver cancer with the same genetic background, this study enrolled 5 HBV-related patients preceded with liver cirrhosis, pathologically identified as early-stage HCC with dysplastic nodules. Liver fibrosis tissues, dysplastic nodules and early HCC tissues from these patients were used to measure DNA methylation. Here, we report significant differences in the DNA methylation spectrum among the three types of tissues. In the early stage of HCC, DNA hypermethylation of tumor suppressor genes is predominant. Additionally, DNA hypermethylation in the early stage of HCC changes the binding ability of transcription factor TP53 to the promoter of tumor suppressor gene ZNF334, and inhibits the expression of ZNF334 at the transcription level. Furthermore, through a series of in vivo and in vitro experiments, we have clarified the exacerbation effect of tumor suppressor gene ZNF334 deletion in the occurrence of HCC. Combined with clinical data, we found that the overall survival and relapse-free survival of patients with high ZNF334 expression are significantly longer. Thus, we partly elucidated a sequential alternation of DNA methylation modification during the occurrence of HCC, and clarified the biological function and regulatory mechanism of the tumor suppressor gene ZNF334, which is regulated by related DNA methylation sites. Our study provides a new target and clinical evidence for the early diagnosis and sheds light on the precise treatment of liver cancer.
Collapse
Affiliation(s)
- Dapeng Sun
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Xiaojie Gan
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Lei Liu
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Yuan Yang
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Dongyang Ding
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Wen Li
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Junyao Jiang
- grid.428926.30000 0004 1798 2725Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530 China
| | - Wenbin Ding
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Linghao Zhao
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Guojun Hou
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Jian Yu
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Jie Wang
- grid.428926.30000 0004 1798 2725Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530 China
| | - Fu Yang
- grid.73113.370000 0004 0369 1660The department of Medical Genetics, Naval Medical University, Shanghai, 200438 China
| | - Shengxian Yuan
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| | - Weiping Zhou
- grid.73113.370000 0004 0369 1660The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, Shanghai, 200438 China
| |
Collapse
|
6
|
Mavrommati I, Johnson F, Echeverria GV, Natrajan R. Subclonal heterogeneity and evolution in breast cancer. NPJ Breast Cancer 2021; 7:155. [PMID: 34934048 PMCID: PMC8692469 DOI: 10.1038/s41523-021-00363-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Subclonal heterogeneity and evolution are characteristics of breast cancer that play a fundamental role in tumour development, progression and resistance to current therapies. In this review, we focus on the recent advances in understanding the epigenetic and transcriptomic changes that occur within breast cancer and their importance in terms of cancer development, progression and therapy resistance with a particular focus on alterations at the single-cell level. Furthermore, we highlight the utility of using single-cell tracing and molecular barcoding methodologies in preclinical models to assess disease evolution and response to therapy. We discuss how the integration of single-cell profiling from patient samples can be used in conjunction with results from preclinical models to untangle the complexities of this disease and identify biomarkers of disease progression, including measures of intra-tumour heterogeneity themselves, and how enhancing this understanding has the potential to uncover new targetable vulnerabilities in breast cancer.
Collapse
Affiliation(s)
- Ioanna Mavrommati
- grid.18886.3fThe Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Flora Johnson
- grid.18886.3fThe Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gloria V. Echeverria
- grid.39382.330000 0001 2160 926XLester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Medicine, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
7
|
Ye R, Zeng H, Liu Z, Jin K, Liu C, Yan S, Yu Y, You R, Zhang H, Chang Y, Wang Y, Liu L, Zhu Y, Xu J, Xu L, Wang Z. Latency-associated peptide identifies therapeutically resistant muscle-invasive bladder cancer with poor prognosis. Cancer Immunol Immunother 2021; 71:301-310. [PMID: 34152439 DOI: 10.1007/s00262-021-02987-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Latency-associated peptide (LAP) was identified as crucial immune regulator in tumor microenvironment (TME) in recent researches. In this study, we aimed to estimate the predictive value of LAP expression for clinical survival and therapeutic response in muscle-invasive bladder cancer (MIBC). METHODS Our study encompassed 140 MIBC patients from Zhongshan Hospital (ZSHS cohort), 401 patients from The Cancer Genome Atlas (TCGA cohort) and 195 patients received PDL1 blockade from IMvigor210 trial. Survival analyses were conducted through Kaplan-Meier curve and Cox regression model. LAP expression and its association with immune contexture were evaluated in ZSHS and TCGA cohort. RESULTS We found that high intratumoral LAP+ cells infiltration anticipated inferior survival and adjuvant chemotherapy (ACT) response, and was closely related to an immunoevasive contexture with increased M2 macrophages, neutrophils and conspicuously a cluster of highly exhausted CD8+ T cells. The combinational analysis of LAP+ cells and CD8+ T cells infiltration stratified patients into distinct risk groups with implications for therapeutic sensitivity to PDL1 blockade and refinement of molecular classification in MIBC. CONCLUSIONS LAP expression was correlated with patients' inferior prognosis, ACT-tolerance and an immunoevasive TME with exhausted CD8+ T cell infiltration, suggesting that LAP could serve as a promising therapeutic target in MIBC. Simultaneously, our novel TME classification based on LAP+ cells and CD8+ T cells infiltration and its potential in appraising PDL1 blockade application for MIBC patients deserved further validation.
Collapse
Affiliation(s)
- Ruiting Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chunnan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Sen Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanze Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Runze You
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongyi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Chern YJ, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med 2020; 17:842-863. [PMID: 33299639 PMCID: PMC7721100 DOI: 10.20892/j.issn.2095-3941.2020.0005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite advances in cancer therapeutics and the integration of personalized medicine, the development of chemoresistance in many patients remains a significant contributing factor to cancer mortality. Upon treatment with chemotherapeutics, the disruption of homeostasis in cancer cells triggers the adaptive response which has emerged as a key resistance mechanism. In this review, we summarize the mechanistic studies investigating the three major components of the adaptive response, autophagy, endoplasmic reticulum (ER) stress signaling, and senescence, in response to cancer chemotherapy. We will discuss the development of potential cancer therapeutic strategies in the context of these adaptive resistance mechanisms, with the goal of stimulating research that may facilitate the development of effective cancer therapy.
Collapse
Affiliation(s)
- Yi-Jye Chern
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| |
Collapse
|
9
|
Wu H, Zhang XY, Niu M, Li FF, Gao S, Wei W, Li SW, Zhang XD, Liu SL, Pang D. Isobaric Tags for Relative and Absolute Quantitation in Proteomic Analysis of Potential Biomarkers in Invasive Cancer, Ductal Carcinoma In Situ, and Mammary Fibroadenoma. Front Oncol 2020; 10:574552. [PMID: 33194682 PMCID: PMC7640741 DOI: 10.3389/fonc.2020.574552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Breast malignancy is a serious threat to women's health around the world. Following the rapid progress in the field of cancer diagnostics and identification of pathological markers, breast tumor treatment methods have been greatly improved. However, for invasive, ductal carcinomas and mammary fibroadenoma, there is an urgent demand for better breast tumor-linked biomarkers. The current study was designed to identify diagnostic and/or therapeutic protein biomarkers for breast tumors. METHODS A total of 140 individuals were included, comprising 35 healthy women, 35 invasive breast cancers (IBC), 35 breast ductal carcinomas in situ (DCIS), and 35 breast fibroadenoma patients. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis was employed to characterize differentially expressed proteins for potential biomarkers in IBC, DCIS, and fibroadenomas by comparisons with their matched adjacent tissues and/or normal breast tissues. The public databases Metascape and String were used for bioinformatic analyses. RESULTS Using the proteomics approach, we identified differentially expressed proteins in tissues of different breast tumors compared to normal/adjacent breast tissues, including 100 in IBC, 52 in DCIS, and 44 in fibroadenoma. Among the 100 IBC differentially expressed proteins, 37 were found to be specific to this type of cancer only. Additionally, four proteins were specifically expressed in DCIS and four in fibroadenoma. Compared to corresponding adjacent tissues and normal breast tissues, 18 step-changing proteins were differentially expressed in IBC, 14 in DCIS, and 13 in fibroadenoma, respectively. Compared to DCIS and normal breast tissues, 65 proteins were differentially expressed in IBC with growing levels of malignancy. CONCLUSIONS The identified potential protein biomarkers may be used as diagnostic and/or therapeutic targets in breast tumors.
Collapse
Affiliation(s)
- Hao Wu
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xian-Yu Zhang
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Niu
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fei-Feng Li
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Song Gao
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Wei
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Si-Wei Li
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xing-Da Zhang
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Da Pang
- Genomics Research Center, College of Pharmacy, State-Province Laboratory of Biomedicine and Pharmaceutics of China, Harbin Medical University, Harbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
10
|
Chen W, Zhang X, Bi K, Zhou H, Xu J, Dai Y, Diao H. Comprehensive Study of Tumor Immune Microenvironment and Relevant Genes in Hepatocellular Carcinoma Identifies Potential Prognostic Significance. Front Oncol 2020; 10:554165. [PMID: 33072579 PMCID: PMC7541903 DOI: 10.3389/fonc.2020.554165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background: The tumor immune microenvironment (TIME) is an external immune system that regulates tumorigenesis. However, cellular interactions involving the TIME in hepatocellular carcinoma (HCC) are poorly characterized. Methods: In this study, we used multidimensional bioinformatic methods to comprehensively analyze cellular TIME characteristics in 735 HCC patients. Additionally, we explored associations involving TIME molecular subtypes and gene types and clinicopathological features to construct a prognostic signature. Results: Based on their characteristics, we classified TIME and gene signatures into three phenotypes (TIME T1–3) and two gene clusters (Gene G1–2), respectively. Further analysis revealed that Gene G1 was associated with immune activation and surveillance and included CD8+ T cells, natural killer cell activation, and activated CD4+ memory T cells. In contrast, Gene G2 was characterized by increased M0 macrophage and regulatory T cell levels. After calculation of principal component algorithms, a TIME score (TS) model, including 78 differentially expressed genes, was constructed based on TIME phenotypes and gene clusters. Furthermore, we observed that the Gene G2 cluster was characterized by high TS, and Gene G1 was characterized by low TS, which correlated with poor and favorable prognosis of HCC, respectively. Correlation analysis showed that TS had a positive association with several clinicopathologic signatures [such as grade, stage, tumor (T), and node (N)] and known somatic gene mutations (such as TP53 and CTNNB1). The prognostic value of the TS model was verified using external data sets. Conclusion: We constructed a TS model based on differentially expressed genes and involving immune phenotypes and demonstrated that the TS model is an effective prognostic biomarker and predictor for HCC patients.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hetong Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jia Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Cancer Classification at the Crossroads. Cancers (Basel) 2020; 12:cancers12040980. [PMID: 32326638 PMCID: PMC7226085 DOI: 10.3390/cancers12040980] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023] Open
Abstract
Internationally accepted classifications of malignant tumors, developed by the World Health Organization (WHO) and the Union for International Cancer Control (UICC), are based on the histotype, site of origin, morphologic grade, and spread of cancer throughout the body. The WHO classifications are the foundation of cancer diagnosis and the starting point for cancer management. Starting in 2000, the WHO classifications began to include biologic and molecular–genetic features. These developments are having a strong impact on cancer diagnosis and treatment, and this impact is amplifying, given the advances in cancer genomics. Molecular–genetic profiling can be used to refine existing classifications of tumors and, for a small but increasing number of cancers, even determine the treatment irrespective of histotype. Here I discuss how cancer classifications may change in the era of cancer genomics.
Collapse
|
12
|
Quetel L, Meiller C, Assié JB, Blum Y, Imbeaud S, Montagne F, Tranchant R, de Wolf J, Caruso S, Copin MC, Hofman V, Gibault L, Badoual C, Pintilie E, Hofman P, Monnet I, Scherpereel A, Le Pimpec-Barthes F, Zucman-Rossi J, Jaurand MC, Jean D. Genetic alterations of malignant pleural mesothelioma: association with tumor heterogeneity and overall survival. Mol Oncol 2020; 14:1207-1223. [PMID: 32083805 PMCID: PMC7266286 DOI: 10.1002/1878-0261.12651] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/13/2019] [Accepted: 02/19/2020] [Indexed: 01/17/2023] Open
Abstract
Development of precision medicine for malignant pleural mesothelioma (MPM) requires a deep knowledge of tumor heterogeneity. Histologic and molecular classifications and histo‐molecular gradients have been proposed to describe heterogeneity, but a deeper understanding of gene mutations in the context of MPM heterogeneity is required and the associations between mutations and clinical data need to be refined. We characterized genetic alterations on one of the largest MPM series (266 tumor samples), well annotated with histologic, molecular and clinical data of patients. Targeted next‐generation sequencing was performed focusing on the major MPM mutated genes and the TERT promoter. Molecular heterogeneity was characterized using predictors allowing classification of each tumor into the previously described molecular subtypes and the determination of the proportion of epithelioid‐like and sarcomatoid‐like components (E/S.scores). The mutation frequencies are consistent with literature data, but this study emphasized that TERT promoter, not considered by previous large sequencing studies, was the third locus most affected by mutations in MPM. Mutations in TERT promoter, NF2, and LATS2 were more frequent in nonepithelioid MPM and positively associated with the S.score. BAP1, NF2, TERT promoter, TP53, and SETD2 mutations were enriched in some molecular subtypes. NF2 mutation rate was higher in asbestos unexposed patient. TERT promoter, NF2, and TP53 mutations were associated with a poorer overall survival. Our findings lead to a better characterization of MPM heterogeneity by identifying new significant associations between mutational status and histologic and molecular heterogeneity. Strikingly, we highlight the strong association between new mutations and overall survival.
Collapse
Affiliation(s)
- Lisa Quetel
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| | - Clément Meiller
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| | - Jean-Baptiste Assié
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - Sandrine Imbeaud
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| | - François Montagne
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| | - Robin Tranchant
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| | - Julien de Wolf
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| | - Marie-Christine Copin
- Institut de Pathologie, Centre de Biologie-Pathologie, CHRU de Lille, France.,Université de Lille, France
| | - Véronique Hofman
- Laboratoire de Pathologie Clinique et Expérimentale (LPCE) et Biobanque (BB-0033-00025), CHRU de Nice, France.,FHU OncoAge, Université Côte d'Azur, Nice, France
| | - Laure Gibault
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service d'Anatomopathologie et Cytologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Cécile Badoual
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service d'Anatomopathologie et Cytologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Ecaterina Pintilie
- Service de Chirurgie Thoracique, Hôpital Calmette - CHRU de Lille, France
| | - Paul Hofman
- Laboratoire de Pathologie Clinique et Expérimentale (LPCE) et Biobanque (BB-0033-00025), CHRU de Nice, France.,FHU OncoAge, Université Côte d'Azur, Nice, France
| | - Isabelle Monnet
- Service de Pneumologie et Pathologie Professionnelle, Centre Hospitalier Intercommunal de Créteil, France
| | - Arnaud Scherpereel
- Université de Lille, France.,Service de Pneumologie et d'Oncologie Thoracique, Hôpital Calmette - CHRU de Lille, France.,Réseau National Expert pour le Mésothéliome Pleural Malin (MESOCLIN), Lille, France
| | - Françoise Le Pimpec-Barthes
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service de Chirurgie Thoracique, Hôpital Européen Georges Pompidou, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Marie-Claude Jaurand
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors laboratory, France
| |
Collapse
|
13
|
Yu H, Wang H, Xu HR, Zhang YC, Yu XB, Wu MC, Jin GZ, Cong WM. Overexpression of MTHFD1 in hepatocellular carcinoma predicts poorer survival and recurrence. Future Oncol 2019; 15:1771-1780. [PMID: 30997850 DOI: 10.2217/fon-2018-0606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: MTHFD1 was the enzyme providing one-carbon derivatives of tetrahydrofolate. We sought to investigate the impact of MTHFD1 on hepatocellular carcinoma (HCC). Methods: Bioinformatic analysis, western blot and immunohistochemistry were conducted to detect MTHFD1 expression in HCC. The relationships between MTHFD1 and prognosis of 172 HCCs were analyzed by Kaplan-Meier method and Cox proportional hazards model. Results: High MTHFD1 expression in HCC represented poor prognosis (overall survival p = 0.025; time to recurrence p = 0.044). Combining MTHFD1 with serum AFP, survival analysis demonstrated the prognosis of the MTHFD1 low expression and AFP ≤20 ng/ml group was better than that of the MTHFD1 high expression or AFP >20 ng/ml group and the MTHFD1 high expression and AFP >20 ng/ml group (overall survival p < 0.0001; time to recurrence p < 0.0001). Conclusion: High MTHFD1 expression in HCC indicated poorer prognosis. Combining MTHFD1 with serum AFP improved the accuracy of prognostic prediction.
Collapse
Affiliation(s)
- Hua Yu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China.,Key Laboratory of Signaling Regulation & Targeting Therapy of Liver Cancer, The Second Military Medical University, Ministry of Education, Shanghai, 200438, PR China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China
| | - Han Wang
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China.,Key Laboratory of Signaling Regulation & Targeting Therapy of Liver Cancer, The Second Military Medical University, Ministry of Education, Shanghai, 200438, PR China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China
| | - Hai-Rong Xu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China
| | - Yu-Chan Zhang
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China
| | - Xue-Bo Yu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China
| | - Meng-Chao Wu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China
| | - Guang-Zhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China.,Key Laboratory of Signaling Regulation & Targeting Therapy of Liver Cancer, The Second Military Medical University, Ministry of Education, Shanghai, 200438, PR China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China.,Key Laboratory of Signaling Regulation & Targeting Therapy of Liver Cancer, The Second Military Medical University, Ministry of Education, Shanghai, 200438, PR China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, PR China
| |
Collapse
|
14
|
Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat Commun 2019; 10:766. [PMID: 30770823 PMCID: PMC6377663 DOI: 10.1038/s41467-019-08595-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/18/2019] [Indexed: 12/23/2022] Open
Abstract
Primary triple negative breast cancers (TNBC) are prone to dissemination but sub-clonal relationships between tumors and resulting metastases are poorly understood. Here we use cellular barcoding of two treatment-naïve TNBC patient-derived xenografts (PDXs) to track the spatio-temporal fate of thousands of barcoded clones in primary tumors, and their metastases. Tumor resection had a major impact on reducing clonal diversity in secondary sites, indicating that most disseminated tumor cells lacked the capacity to 'seed', hence originated from 'shedders' that did not persist. The few clones that continued to grow after resection i.e. 'seeders', did not correlate in frequency with their parental clones in primary tumors. Cisplatin treatment of one BRCA1-mutated PDX model to non-palpable levels had a surprisingly minor impact on clonal diversity in the relapsed tumor yet purged 50% of distal clones. Therefore, clonal features of shedding, seeding and drug resistance are important factors to consider for the design of therapeutic strategies.
Collapse
|
15
|
Cañas R, Linares I, Guedea F, Berenguer Francés MÁ. Why should radiation oncology do translational research? [corrected]. Rep Pract Oncol Radiother 2019; 24:60-64. [PMID: 30455615 PMCID: PMC6234255 DOI: 10.1016/j.rpor.2018.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022] Open
Abstract
Radiological Oncology, like the rest of medical specialties, is beginning to provide can personalized therapies. The ongoing scientific advances enable a great degree of precision in diagnoses and therapies. To fight cancer, from a radiotherapy unit, requires up-to-date equipment, professionals with different specialties working in synchrony (doctors, physicists, biologists, etc.) and a lot of research. Some of the new therapeutic tendencies are immunotherapy, nanoparticles, gene therapy, biomarkers, artificial intelligence, etc. A new clinical paradigm in which new professional networks are inevitable is arising. The mission of translational research is to become a scientific engine in the clinical space.
Collapse
Affiliation(s)
- Rut Cañas
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
| | - Isabel Linares
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
- Radiation Oncology Department. Institut Català d’Oncologia, L’Hospitalet de Llobregat, Avinguda Granvia, 199-203, 08908, Barcelona, Spain
| | - Ferran Guedea
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
- Radiation Oncology Department. Institut Català d’Oncologia, L’Hospitalet de Llobregat, Avinguda Granvia, 199-203, 08908, Barcelona, Spain
| | - Miguel Ángel Berenguer Francés
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
- Radiation Oncology Department. Institut Català d’Oncologia, L’Hospitalet de Llobregat, Avinguda Granvia, 199-203, 08908, Barcelona, Spain
| |
Collapse
|
16
|
Aberrant miRNAs expressed in HER-2 negative breast cancers patient. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:257. [PMID: 30342533 PMCID: PMC6196003 DOI: 10.1186/s13046-018-0920-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
Abstract
Background Breast cancer is a highly heterogeneous pathology, exhibiting a number of subtypes commonly associated with a poor outcome. Due to their high stability, microRNAs are often regarded as non-invasive cancer biomarkers, having an expression pattern specific for their ‘cell of origin’. Method Triple negative breast cancer (TNBC: ER-, PR-, Her-2-) and double positive breast cancer (DPBC: ER+, PR+, Her-2) miRNA expression patterns were obtained by analysis of the TCGA (The Cancer Genome Atlas) data, followed by PCR-array analysis on plasma samples from 20 TNBC patients, 14 DPBC patients and 11 controls. Results Three downregulated and nine upregulated miRNAs were obtained from the TNBC analysis. Five overexpressed miRNAs were identified in the DPBC group. Four of the dysregulated miRNAs (miR-10a, miR-125b, miR-210 and miR-489) were common for both groups. The cluster miR-17-92 (miR-17, miR-20a, miR-20b, and miR-93), along with miR-130, miR-22 and miR-29a/c, were found to differentiate between TNBC and DPBC. A panel of five transcripts (miR-10a, miR-125, miR-193b, miR-200b and miR-489) was validated in a new set of plasma samples. The overlapping of TCGA and plasma profiling data revealed miR-200b, miR-200c, miR-210 and miR-29c as common signature. MiR-200b was validated on additional normal and tumor tissue samples. The expression level of this transcript from the TCGA data was correlated with lung and bone metastatic genes. Conclusion The miR-200b presents a great potential for the future advancements in the diagnostic/prognostic and therapeutic approach of TNBC, along with other coding or non-coding transcripts. However, this needs to be further integrated in a regulatory network that acts in conjunction with other markers that affect the patients’ prognosis or response to therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0920-2) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Kaina B, Izzotti A, Xu J, Christmann M, Pulliero A, Zhao X, Dobreanu M, Au WW. Inherent and toxicant-provoked reduction in DNA repair capacity: A key mechanism for personalized risk assessment, cancer prevention and intervention, and response to therapy. Int J Hyg Environ Health 2018; 221:993-1006. [PMID: 30041861 DOI: 10.1016/j.ijheh.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023]
Abstract
Genomic investigations reveal novel evidence which indicates that genetic predisposition and inherent drug response are key factors for development of cancer and for poor response to therapy. However, mechanisms for these outcomes and interactions with environmental factors have not been well-characterized. Therefore, cancer risk, prevention, intervention and prognosis determinations have still mainly been based on population, rather than on individualized, evaluations. The objective of this review was to demonstrate that a key mechanism which contributes to the determination is inherent and/or toxicant-provoked reduction in DNA repair capacity. In addition, functional and quantitative determination of DNA repair capacity on an individual basis would dramatically change the evaluation and management of health problems from a population to a personalized basis. In this review, justifications for the scenario were delineated. Topics to be presented include assays for detection of functional DNA repair deficiency, mechanisms for DNA repair defects, toxicant-perturbed DNA repair capacity, epigenetic mechanisms (methylation and miRNA expression) for alteration of DNA repair function, and bioinformatics approach to analyze large amount of genomic data. Information from these topics has recently been and will be used for better understanding of cancer causation and of response to therapeutic interventions. Consequently, innovative genomic- and mechanism-based evidence can be increasingly used to develop more precise cancer risk assessment, and target-specific and personalized medicine.
Collapse
Affiliation(s)
| | - Alberto Izzotti
- University of Genoa, Genoa, Italy; IRCCS Policlinico San Martino Genoa, Italy
| | - Jianzhen Xu
- Shantou University Medical College, Shantou, China
| | | | | | - Xing Zhao
- Shantou University Medical College, Shantou, China
| | | | - William W Au
- Shantou University Medical College, Shantou, China; University of Medicine and Pharmacy, Tirgu Mures, Romania; University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|