1
|
Chen A, Hart SL, Lannon M, Hawkins C, Reddy KKV, Lu JQ. Meningiomas in Rubinstein-Taybi syndrome: A case report and comprehensive review. J Neuropathol Exp Neurol 2025; 84:329-336. [PMID: 39740655 PMCID: PMC11923739 DOI: 10.1093/jnen/nlae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Rubinstein-Taybi syndrome (RTS) is a congenital disorder with characteristic clinical manifestations. In the vast majority of cases, it is caused by mutations of the gene encoding the transcriptional co-activator cAMP-response element binding protein (CBP)-binding protein (CREBBP). It has been thought to be a tumor predisposition syndrome as RTS patients have an increased risk of developing tumors including meningiomas. However, RTS-associated meningiomas are rarely reported. We report a unique RTS-associated meningioma in which an oncogenic CREBBP mutation is identified. We also comprehensively review the reported RTS-associated meningiomas, from epidemiology and pathogenesis to clinicopathological characteristics and treatment. All RTS patients with meningiomas are female and have the exclusive mutations of CREBBP. In population-based studies RTS-associated meningiomas seem to develop at younger ages. Their pathogenesis may be driven by the CREBBP/CBP alterations resulting in aberrant signal transduction in the CBP-mediated signaling pathways. Meningiomas in RTS patients have common clinicopathological characteristics including comorbidity with other tumors, radiologically intra-osseous growth, and uncommon histopathology such as ossifying and secretory features. Given the genetic nature and rarity of RTS-associated meningiomas, further investigation of their characteristics may define molecular targets for improved therapeutic options for RTS patients.
Collapse
Affiliation(s)
- Andrea Chen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shannon Louise Hart
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Melissa Lannon
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kesava K V Reddy
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
3
|
Pacella G, Capell BC. Epigenetic and metabolic interplay in cutaneous squamous cell carcinoma. Exp Dermatol 2021; 30:1115-1125. [PMID: 33844325 PMCID: PMC8324523 DOI: 10.1111/exd.14354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
With the ageing of the population and increased levels of recreational sun exposure and immunosuppression, cutaneous squamous cell carcinoma (cSCC), is both an enormous and expanding clinical and economic issue. Despite advances in therapy, up to 5000-8000 people are estimated to die every year from cSCC in the U.S., highlighting the need for both better prevention and treatments. Two emerging areas of scientific discovery that may offer new therapeutic approaches for cSCC are epigenetics and metabolism. Importantly, these disciplines display extensive crosstalk, with metabolic inputs contributing to the chromatin landscape, while the dynamic epigenome shapes transcriptional and cellular responses that feedback into cellular metabolism. Recent evidence suggests that indeed, epigenetic and metabolic dysregulation may be critical contributors to cSCC pathogenesis. Here, we synthesize the latest findings from these fast-moving fields, including how they may drive cSCC, yet also be harnessed for therapy.
Collapse
Affiliation(s)
- Gina Pacella
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brian C. Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Cai LY, Chen SJ, Xiao SH, Sun QJ, Ding CH, Zheng BN, Zhu XY, Liu SQ, Yang F, Yang YX, Zhou B, Luo C, Zhang X, Xie WF. Targeting p300/CBP Attenuates Hepatocellular Carcinoma Progression through Epigenetic Regulation of Metabolism. Cancer Res 2020; 81:860-872. [PMID: 33361394 DOI: 10.1158/0008-5472.can-20-1323] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/22/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023]
Abstract
Targeting epigenetics in cancer has emerged as a promising anticancer strategy. p300/CBP is a central regulator of epigenetics and plays an important role in hepatocellular carcinoma (HCC) progression. Tumor-associated metabolic alterations contribute to the establishment and maintenance of the tumorigenic state. In this study, we used a novel p300 inhibitor, B029-2, to investigate the effect of targeting p300/CBP in HCC and tumor metabolism. p300/CBP-mediated acetylation of H3K18 and H3K27 increased in HCC tissues compared with surrounding noncancerous tissues. Conversely, treatment with B029-2 specifically decreased H3K18Ac and H3K27Ac and displayed significant antitumor effects in HCC cells in vitro and in vivo. Importantly, ATAC-seq and RNA-seq integrated analysis revealed that B029-2 disturbed metabolic reprogramming in HCC cells. Moreover, B029-2 decreased glycolytic function and nucleotide synthesis in Huh7 cells by reducing H3K18Ac and H3K27Ac levels at the promoter regions of amino acid metabolism and nucleotide synthesis enzyme genes, including PSPH, PSAT1, ALDH18A1, TALDO1, ATIC, and DTYMK. Overexpression of PSPH and DTYMK partially reversed the inhibitory effect of B029-2 on HCC cells. These findings suggested that p300/CBP epigenetically regulates the expression of glycolysis-related metabolic enzymes through modulation of histone acetylation in HCC and highlights the value of targeting the histone acetyltransferase activity of p300/CBP for HCC therapy. SIGNIFICANCE: This study demonstrates p300/CBP as a critical epigenetic regulator of glycolysis-related metabolic enzymes in HCC and identifies the p300/CBP inhibitor B029-2 as a potential therapeutic strategy in this disease.
Collapse
Affiliation(s)
- Ling-Yan Cai
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Shi-Jie Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Sen-Hao Xiao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qin-Juan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bai-Nan Zheng
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin-Yan Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Yang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ya-Xi Yang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Bing Zhou
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China. .,Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:224. [PMID: 33109235 PMCID: PMC7592369 DOI: 10.1186/s13046-020-01733-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia is the major influence factor in physiological and pathological courses which are mainly mediated by hypoxia-inducible factors (HIFs) in response to low oxygen tensions within solid tumors. Under normoxia, HIF signaling pathway is inhibited due to HIF-α subunits degradation. However, in hypoxic conditions, HIF-α is activated and stabilized, and HIF target genes are successively activated, resulting in a series of tumour-specific activities. The activation of HIFs, including HIF-1α, HIF-2α and HIF-3α, subsequently induce downstream target genes which leads to series of responses, the resulting abnormal processes or metabolites in turn affect HIFs stability. Given its functions in tumors progression, HIFs have been regarded as therapeutic targets for improved treatment efficacy. Epigenetics refers to alterations in gene expression that are stable between cell divisions, and sometimes between generations, but do not involve changes in the underlying DNA sequence of the organism. And with the development of research, epigenetic regulation has been found to play an important role in the development of tumors, which providing accumulating basic or clinical evidences for tumor treatments. Here, given how little has been reported about the overall association between hypoxic tumors and epigenetics, we made a more systematic review from epigenetic perspective in hope of helping others better understand hypoxia or HIF pathway, and providing more established and potential therapeutic strategies in tumors to facilitate epigenetic studies of tumors.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chao Mao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|