1
|
Ahn B, Moon D, Kim HS, Lee C, Cho NH, Choi HK, Kim D, Lee JY, Nam EJ, Won D, An HJ, Kwon SY, Shin SJ, Jung HR, Kwon D, Park H, Kim M, Cha YJ, Park H, Lee Y, Noh S, Lee YM, Choi SE, Kim JM, Sung SH, Park E. Histopathologic image-based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer. Nat Commun 2024; 15:4253. [PMID: 38762636 PMCID: PMC11102549 DOI: 10.1038/s41467-024-48667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Platinum-based chemotherapy is the cornerstone treatment for female high-grade serous ovarian carcinoma (HGSOC), but choosing an appropriate treatment for patients hinges on their responsiveness to it. Currently, no available biomarkers can promptly predict responses to platinum-based treatment. Therefore, we developed the Pathologic Risk Classifier for HGSOC (PathoRiCH), a histopathologic image-based classifier. PathoRiCH was trained on an in-house cohort (n = 394) and validated on two independent external cohorts (n = 284 and n = 136). The PathoRiCH-predicted favorable and poor response groups show significantly different platinum-free intervals in all three cohorts. Combining PathoRiCH with molecular biomarkers provides an even more powerful tool for the risk stratification of patients. The decisions of PathoRiCH are explained through visualization and a transcriptomic analysis, which bolster the reliability of our model's decisions. PathoRiCH exhibits better predictive performance than current molecular biomarkers. PathoRiCH will provide a solid foundation for developing an innovative tool to transform the current diagnostic pipeline for HGSOC.
Collapse
Affiliation(s)
- Byungsoo Ahn
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Damin Moon
- Artificial Intelligence Research Center, JLK Inc., Seoul, South Korea
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chung Lee
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Hoon Cho
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Heung-Kook Choi
- Artificial Intelligence Research Center, JLK Inc., Seoul, South Korea
| | - Dongmin Kim
- Artificial Intelligence Research Center, JLK Inc., Seoul, South Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Ji Nam
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sun Young Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Ra Jung
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Dohee Kwon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Heejung Park
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Milim Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunjin Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yangkyu Lee
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Songmi Noh
- Department of Diagnostic Pathology, Gangnam CHA Medical Center, CHA University College of Medicine, Seoul, South Korea
| | - Yong-Moon Lee
- Department of Pathology, Dankook University School of Medicine, Cheonan, South Korea
| | - Sung-Eun Choi
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Ji Min Kim
- Department of Pathology, Ewha Womans University, Seoul, South Korea
| | - Sun Hee Sung
- Department of Pathology, Ewha Womans University, Seoul, South Korea
| | - Eunhyang Park
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Kim JG, Kim SI, Song SH, Gu JY, Lee M, Kim HK. Diagnostic and prognostic role of circulating neutrophil extracellular trap markers and prekallikrein in patients with high-grade serous ovarian cancer. Front Oncol 2022; 12:992056. [PMID: 36620601 PMCID: PMC9813379 DOI: 10.3389/fonc.2022.992056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Tumor-promoting inflammation is among the hallmarks of cancer. Prekallikrein is among the acute-phase reactants in the inflammatory response; moreover, neutrophils release nuclear contents into the extracellular space to create neutrophil extracellular traps (NET). We aimed to investigate the diagnostic and prognostic utilities of circulating plasma NET markers and prekallikrein for high-grade serous ovarian cancer (HGSOC). Methods Circulating levels of three NET markers (histone-DNA complex, cell-free DNA, and neutrophil elastase) and prekallikrein were measured in 75 patients with HGSOC and 23 healthy controls. We used an area under the receiver operating characteristic curve (AUC) analysis to investigate their diagnostic and prognostic utilities for HGSOC. Results Compared with healthy controls, patients with HGSOC showed significantly higher levels of the three NET markers and prekallikrein. Patients with advanced-stage HGSOC showed significantly higher levels of the cell-free DNA (87.4 vs. 79.5 ng/ml; P = 0.013), compared with those with early-stage HGSOC. Further, the levels of histone-DNA complex, neutrophil elastase, and prekallikrein did not significantly differ according to the cancer stage. All markers showed significant diagnostic utility. Notably, a logistic regression-based model that comprised all four markers showed the strongest diagnostic power (AUC, 0.966; 95% confidence interval [CI], 0.933-1.000). Specifically, neutrophil elastase was identified as an independent poor prognostic factor for overall survival (adjusted hazard ratio [aHR], 10.17; 95% CI, 1.09-94.97; P = 0.042) and progression-free survival (aHR, 14.47; 95% CI, 1.52-137.35; P = 0.020) in patients with HGSOC. Conclusions The levels of the three NET markers and prekallikrein might be novel diagnostic and prognostic markers for HGSOC.
Collapse
Affiliation(s)
- Jisoo G. Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea,Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Maria Lee, ; Hyun Kyung Kim,
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea,*Correspondence: Maria Lee, ; Hyun Kyung Kim,
| |
Collapse
|
3
|
Role of Myeloid Tet Methylcytosine Dioxygenase 2 in Pulmonary and Peritoneal Inflammation Induced by Lipopolysaccharide and Peritonitis Induced by Escherichia coli. Cells 2021; 11:cells11010082. [PMID: 35011643 PMCID: PMC8750455 DOI: 10.3390/cells11010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Tet methylcytosine dioxygenase 2 (Tet2) mediates demethylation of DNA. We here sought to determine the expression and function of Tet2 in macrophages upon exposure to lipopolysaccharide (LPS), and in the host response to LPS induced lung and peritoneal inflammation, and during Escherichia (E.) coli induced peritonitis. LPS induced Tet2 expression in mouse macrophages and human monocytes in vitro, as well as in human alveolar macrophages after bronchial instillation in vivo. Bone marrow-derived macrophages from myeloid Tet2 deficient (Tet2fl/flLysMCre) mice displayed enhanced production of IL-1β, IL-6 and CXCL1 upon stimulation with several Toll-like receptor agonists; similar results were obtained with LPS stimulated alveolar and peritoneal macrophages. Histone deacetylation was involved in the effect of Tet2 on IL-6 production, whilst methylation at the Il6 promoter was not altered by Tet2 deficiency. Tet2fl/flLysMCre mice showed higher IL-6 and TNF levels in bronchoalveolar and peritoneal lavage fluid after intranasal and intraperitoneal LPS administration, respectively, whilst other inflammatory responses were unaltered. E. coli induced stronger production of IL-1β and IL-6 by Tet2 deficient peritoneal macrophages but not in peritoneal lavage fluid of Tet2fl/flLysMCre mice after in vivo intraperitoneal infection. Tet2fl/flLysMCre mice displayed enhanced bacterial growth during E. coli peritonitis, which was associated with a reduced capacity of Tet2fl/flLysMCre peritoneal macrophages to inhibit the growth of E. coli in vitro. Collectively, these data suggest that Tet2 is involved in the regulation of macrophage functions triggered by LPS and during E. coli infection.
Collapse
|
4
|
The versatile role of the contact system in cardiovascular disease, inflammation, sepsis and cancer. Biomed Pharmacother 2021; 145:112429. [PMID: 34801854 DOI: 10.1016/j.biopha.2021.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The human contact system consists of plasma proteins, which - after contact to foreign surfaces - are bound to them, thereby activating the zymogens of the system into enzymes. This activation mechanism gave the system its name - contact system. It is considered as a procoagulant and proinflammatory response mechanism, as activation finally leads to the generation of fibrin and bradykinin. To date, no physiological processes have been described that are mediated by contact activation. However, contact system factors play a pathophysiological role in numerous diseases, such as cardiovascular diseases, arthritis, colitis, sepsis, and cancer. Contact system factors are therefore an interesting target for new therapeutic options in different clinical conditions.
Collapse
|
5
|
Ramirez-Moral I, Ferreira BL, de Vos AF, van der Poll T. Post-treatment with the PPAR-γ agonist pioglitazone inhibits inflammation and bacterial growth during Klebsiella pneumonia. Respir Res 2021; 22:230. [PMID: 34412637 PMCID: PMC8375046 DOI: 10.1186/s12931-021-01823-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Agonists of peroxisome proliferator-activated receptor (PPAR)-γ have been suggested as potential adjuvant therapy in bacterial pneumonia because of their capacity to inhibit inflammation and enhance bacterial clearance. Previous studies only assessed the effects of pretreatment with these compounds, thereby bearing less relevance for the clinical scenario. Moreover, PPAR-γ agonists have not been studied in pneumonia caused by Klebsiella pneumoniae, a common human respiratory pathogen of which antibiotic treatment is hampered by increasing antimicrobial resistance. Here we show that administration of the PPAR-γ agonist pioglitazone 6 or 8 h after infection of mice with a highly virulent strain of Klebsiella pneumoniae via the airways results in reduced cytokine and myeloperoxidase levels in the lungs at 24 h after infection, as well as reduced bacterial growth in the lungs and decreased dissemination to distant organs at 42 h post-infection. These results suggest that pioglitazone may be an interesting agent in the treatment of Klebsiella pneumonia.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands. .,Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.
| | - Bianca Lima Ferreira
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.,Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Hypoxia-Inducible Factor-1 α in Macrophages, but Not in Neutrophils, Is Important for Host Defense during Klebsiella pneumoniae-Induced Pneumosepsis. Mediators Inflamm 2021; 2021:9958281. [PMID: 34393650 PMCID: PMC8360744 DOI: 10.1155/2021/9958281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-inducible factor- (HIF-) 1α has been implicated in the ability of cells to adapt to alterations in oxygen levels. Bacterial stimuli can induce HIF1α in immune cells, including those of myeloid origin. We here determined the role of myeloid cell HIF1α in the host response during pneumonia and sepsis caused by the common human pathogen Klebsiella pneumoniae. To this end, we generated mice deficient for HIF1α in myeloid cells (LysM-cre × Hif1αfl/fl) or neutrophils (Mrp8-cre × Hif1αfl/fl) and infected these with Klebsiella pneumoniae via the airways. Myeloid, but not neutrophil, HIF1α-deficient mice had increased bacterial loads in the lungs and distant organs after infection as compared to control mice, pointing at a role for HIF1α in macrophages. Myeloid HIF1α-deficient mice did not show increased bacterial growth after intravenous infection, suggesting that their phenotype during pneumonia was mediated by lung macrophages. Alveolar and lung interstitial macrophages from LysM-cre × Hif1αfl/fl mice produced lower amounts of the immune enhancing cytokine tumor necrosis factor upon stimulation with Klebsiella, while their capacity to phagocytose or to produce reactive oxygen species was unaltered. Alveolar macrophages did not upregulate glycolysis in response to lipopolysaccharide, irrespective of HIF1α presence. These data suggest a role for HIF1α expressed in lung macrophages in protective innate immunity during pneumonia caused by a common bacterial pathogen.
Collapse
|
7
|
Ramirez-Moral I, Blok DC, Bernink JH, Garcia-Laorden MI, Florquin S, Boon L, Van't Veer C, Mack M, Saluzzo S, Knapp S, Spits H, de Vos AF, van der Poll T. Interleukin-33 improves local immunity during Gram-negative pneumonia by a combined effect on neutrophils and inflammatory monocytes. J Pathol 2021; 253:374-383. [PMID: 33305354 PMCID: PMC7986604 DOI: 10.1002/path.5601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Pneumonia represents a major health care burden and Gram‐negative bacteria provide an increasing therapeutic challenge at least in part through the emergence of multidrug‐resistant strains. IL‐33 is a multifunctional cytokine belonging to the IL‐1 family that can affect many different cell types. We sought here to determine the effect of recombinant IL‐33 on the host response during murine pneumonia caused by the common Gram‐negative pathogen Klebsiella pneumoniae. IL‐33 pretreatment prolonged survival for more than 1 day during lethal airway infection and decreased bacterial loads at the primary site of infection and distant organs. Postponed treatment with IL‐33 (3 h) also reduced bacterial growth and dissemination. IL‐33‐mediated protection was not observed in mice deficient for the IL‐33 receptor component IL‐1 receptor‐like 1. IL‐33 induced a brisk type 2 response, characterized by recruitment of type 2 innate lymphoid cells to the lungs and enhanced release of IL‐5 and IL‐13. However, neither absence of innate lymphoid cells or IL‐13, nor blocking of IL‐5 impacted on IL‐33 effects in mice infected with Klebsiella. Likewise, IL‐33 remained effective in reducing bacterial loads in mice lacking B, T, and natural killer T cells. Experiments using antibody‐mediated cell depletion indicated that neutrophils and inflammatory monocytes were of importance for antibacterial defense. The capacity of IL‐33 to restrict bacterial growth in the lungs was strongly reduced in mice depleted of both neutrophils and inflammatory monocytes, but not in mice selectively depleted of either one of these cell types. These results suggest that IL‐33 boosts host defense during bacterial pneumonia by a combined effect on neutrophils and inflammatory monocytes. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dana C Blok
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jochem H Bernink
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M Isabel Garcia-Laorden
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Cornelis Van't Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Simona Saluzzo
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Dagnino APA, Campos MM, Silva RBM. Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090215. [PMID: 32867272 PMCID: PMC7558425 DOI: 10.3390/ph13090215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Kinins and their receptors have been implicated in a series of pathological alterations, representing attractive pharmacological targets for several diseases. The present review article aims to discuss the role of the kinin system in infectious diseases. Literature data provides compelling evidence about the participation of kinins in infections caused by diverse agents, including viral, bacterial, fungal, protozoan, and helminth-related ills. It is tempting to propose that modulation of kinin actions and production might be an adjuvant strategy for management of infection-related complications.
Collapse
|
9
|
Köhler J, Maletzki C, Koczan D, Frank M, Springer A, Steffen C, Revenko AS, MacLeod AR, Mikkat S, Kreikemeyer B, Oehmcke-Hecht S. Kininogen supports inflammation and bacterial spreading during Streptococccus Pyogenes Sepsis. EBioMedicine 2020; 58:102908. [PMID: 32707450 PMCID: PMC7381504 DOI: 10.1016/j.ebiom.2020.102908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND High-molecular-weight kininogen is a cofactor of the human contact system, an inflammatory response mechanism that is activated during sepsis. It has been shown that high-molecular-weight kininogen contributes to endotoxemia, but is not critical for local host defense during pneumonia by Gram-negative bacteria. However, some important pathogens, such as Streptococcus pyogenes, can cleave kininogen by contact system activation. Whether kininogen causally affects antibacterial host defense in S. pyogenes infection, remains unknown. METHODS Kininogen concentration was determined in course plasma samples from septic patients. mRNA expression and degradation of kininogen was determined in liver or plasma of septic mice. Kininogen was depleted in mice by treatment with selective kininogen directed antisense oligonucleotides (ASOs) or a scrambled control ASO for 3 weeks prior to infection. 24 h after infection, infection parameters were determined. FINDINGS Data from human and mice samples indicate that kininogen is a positive acute phase protein. Lower kininogen concentration in plasma correlate with a higher APACHE II score in septic patients. We show that ASO-mediated depletion of kininogen in mice indeed restrains streptococcal spreading, reduces levels of proinflammatory cytokines such as IL-1β and IFNγ, but increased intravascular tissue factor and fibrin deposition in kidneys of septic animals. INTERPRETATION Mechanistically, kininogen depletion results in reduced plasma kallikrein levels and, during sepsis, in increased intravascular tissue factor that may reinforce immunothrombosis, and thus reduce streptococcal spreading. These novel findings point to an anticoagulant and profibrinolytic role of kininogens during streptococcal sepsis. FUNDING Full details are provided in the Acknowledgements section.
Collapse
Affiliation(s)
- Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Center for Medical Research - Core Facility Micro-Array-Technology, Rostock University Medical Center, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, Rostock University, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany
| | - Carolin Steffen
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92008, USA
| | - A Robert MacLeod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92008, USA
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
10
|
Otto NA, de Vos AF, van Heijst JWJ, Roelofs JJTH, van der Poll T. Myeloid Liver Kinase B1 depletion is associated with a reduction in alveolar macrophage numbers and an impaired host defense during gram-negative pneumonia. J Infect Dis 2020; 225:1284-1295. [PMID: 32648919 PMCID: PMC8974838 DOI: 10.1093/infdis/jiaa416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Liver kinase B1 (LKB1) has been studied extensively as a tumor suppressor gene (Stk11) in the context of cancer. We hypothesized that myeloid LKB1 plays a role in innate immunity during pneumonia. METHODS Mice deficient for LKB1 in myeloid cells (LysM-cre x Stk11fl/fl ) or neutrophils (Mrp8-cre x Stk11fl/fl) were infected with Klebsiellapneumoniae via the airways. LysM-cre x Stk11fl/fl mice were also intranasally challenged with lipopolysaccharide (LPS). RESULTS Myeloid, but not neutrophil LKB1 deficient mice had increased bacterial loads in lungs from 6 to 40 hours after infection as compared to control mice, pointing at a role for LKB1 in macrophages. Myeloid LKB1 deficiency was associated with reduced cytokine release into the airways upon local LPS instillation. The number of classical (SiglecFhighCD11bneg) alveolar macrophages (AMs) was reduced by approximately 50% in the lungs of myeloid LKB1 deficient mice, which was not caused by increased cell death or reduced proliferation. Instead, myeloid LKB1 deficient mice had AMs with a 'non-classical' (SiglecFlowCD11bpos) phenotype. AMs did not upregulate glycolysis in response to LPS, irrespective of LKB1 presence. CONCLUSION Myeloid LKB1 is important for local host defense during Klebsiella pneumonia by maintaining adequate AM numbers in the lung.
Collapse
Affiliation(s)
- Natasja A Otto
- Center for Experimental and Molecular Medicine Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Jeroen W J van Heijst
- Center for Experimental and Molecular Medicine Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.,Neogene Therapeutics, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.,Department of Pathology and Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Lam Z, Condliffe AM. Prekallikrein - an emerging therapeutic target for Klebsiella pneumoniae infection? †. J Pathol 2020; 250:359-361. [PMID: 31943204 DOI: 10.1002/path.5382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that is increasingly difficult to treat due to the emergence of multidrug resistant strains. In a recent article, Ding et al demonstrate that prekallikrein depletion in mice followed by intranasal instillation of K. pneumoniae leads to a reduced bacterial burden and prolonged host survival, together with evidence of reduced distant organ damage. These effects are apparently independent of the role of prekallikrein in the contact system, and are associated with transcriptional changes relevant to innate immunity in the lung, established prior to infection. This study highlights the importance of further investigating the role of prekallikrein and other contact cascade components in host defence to counter K. pneumoniae (and perhaps other pathogens), with an overall aim of identifying potential therapeutic targets relevant to pulmonary infection with such resistant pathogens. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zena Lam
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| |
Collapse
|