1
|
Abreu AP, Gomes J, Mota J, Almeida AP, Carvalhal R, Vidal F, Medeiros R, Sousa H, Lawall M, Gil da Costa RM, Brito HO, Brito LMO. GSTM1 and GSTT1 deletions in penile cancer are associated with TNM stage but not with HPV DNA status. Pathol Res Pract 2024; 264:155686. [PMID: 39481227 DOI: 10.1016/j.prp.2024.155686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Deletions of the GSTT1 and GSTM1 are associated with chemical carcinogenesis and genitourinary malignancies like bladder cancer, where they correlate with increased tumor aggressiveness. In uterine cervical lesions, GSTT1 and GSTM1 deletions have also been suggested to facilitate the persistence of human papillomavirus (HPV) infection and HPV-induced carcinogenesis. This work addresses the hypothesis that GSTT1/GSTM1 deletions are associated with presence of HPV DNA and aggressiveness in penile cancer, a rare malignancy with HPV+ and HPV- subtypes. Tumor DNA samples and medical records from HPV+ and HPV- penile cancer patients were analyzed. Each sample was screened for GSTT1 and GSTM1 deletions and for the presence of HPV DNA using PCR-based techniques. 74.5 % of samples contained HPV DNA. 61.8 % of cases showed T2 and T3 staging. There were no differences in the frequencies of GSTT1/GSTM1 genotypes between HPV+ and HPV- cases (p>0.05). GSTT1wt/GSTMnull patients were more likely to have higher TNM stages compared with other genotypes (p=0.012), but no differences were observed concerning perineural invasion nor lymphovascular invasion. These findings indicate that GSTT1 and GSTM1 deletions are common in HPV+ and HPV- penile cancers. GSTM1 deletions in the presence of wild-type GSTT1 seems to be associated with tumor progression, and additional studies are warranted to confirm its potential as a prognostic marker in penile cancer.
Collapse
Affiliation(s)
- Ana Paula Abreu
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| | - Jhessica Gomes
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| | - Jucileide Mota
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| | - Ana Paula Almeida
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| | - Rita Carvalhal
- Federal University of Maranhão University Hospital (HUUFMA), Rua Barão de Itapary, 227 - Centro, São Luís, Maranhão 65020-070, Brazil.
| | - Flávia Vidal
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil; Department of Morphology, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão 65080-805, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal.
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal.
| | - Melaine Lawall
- Department of Morphology, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão 65080-805, Brazil.
| | - Rui M Gil da Costa
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil; Department of Morphology, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão 65080-805, Brazil; Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal; Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| | - Haissa O Brito
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil; Department of Morphology, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão 65080-805, Brazil.
| | - Luciane M O Brito
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| |
Collapse
|
2
|
Zhou B, Li D, Chen X, Cai F, Cui J, Liu S, Wang W, Yu D. Transformation zone at the vallate papillae: a significant source of papillomavirus infection at the base of the tongue? J Cancer Res Clin Oncol 2024; 150:492. [PMID: 39527322 PMCID: PMC11554903 DOI: 10.1007/s00432-024-06016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The aim of this study was to investigate whether the base of the tongue harbours a transformation zone (TZ), i.e., an initiation site for papillomavirus infection, analogous to that in the uterine cervix by examining the histological structure of Von Ebner's gland ducts in the vallate papillae. METHODS Immunohistochemical staining and immunofluorescence techniques were used to detect markers associated with the uterine cervical TZ in the vallate papillae, and these results were compared with those in uterine cervical tissue. Additionally, tongue samples from mouse papillomavirus (MmuPV1)-infected mice were analysed to test our hypothesis. RESULTS The specific expression of CK17 in the squamous epithelium of the vallate papillae indicated the presence of immature squamous epithelium, arising from the transformation of reserve cells in this region. Moreover, a s determined using virus-infected mice, the TZ at the base of the tongue was a significant site for papilloma virus infection. CONCLUSIONS This is the first study to reveal the presence of a TZ in the vallate papillae, as determined by the presence of reserve cells and immature squamous epithelium, suggesting that the base of the tongue is a significant site for papillomavirus infection. This finding provides an entry point for the early prevention and diagnosis of HPV-associated lesions in the oropharynx.
Collapse
Affiliation(s)
- Bosen Zhou
- College of Stomatology, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
| | - Dan Li
- National Center of Technology Innovation for animal model. National Human Diseases Animal Model Resource Center. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education. NHC Key Laboratory of Comparative Medicine. Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, 100020, China
| | - Xinyu Chen
- College of Stomatology, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
| | - Fangzhou Cai
- National Center of Technology Innovation for animal model. National Human Diseases Animal Model Resource Center. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education. NHC Key Laboratory of Comparative Medicine. Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, 100020, China
| | - Jiarui Cui
- National Center of Technology Innovation for animal model. National Human Diseases Animal Model Resource Center. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education. NHC Key Laboratory of Comparative Medicine. Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, 100020, China
| | - Siyu Liu
- College of Stomatology, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
| | - Wei Wang
- National Center of Technology Innovation for animal model. National Human Diseases Animal Model Resource Center. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education. NHC Key Laboratory of Comparative Medicine. Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, 100020, China.
| | - Dahai Yu
- First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
3
|
Lopes-Nunes J, Oliveira PA, Cruz C. Enhanced targeted liposomal delivery of imiquimod via aptamer functionalization for head and neck cancer therapy. Colloids Surf B Biointerfaces 2024; 243:114121. [PMID: 39094208 DOI: 10.1016/j.colsurfb.2024.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
The incidence of head and neck cancers, particularly those associated with Human Papillomavirus (HPV) infections, has been steadily increasing. Conventional therapies exhibit limitations and drawbacks, prompting the exploration of new strategies over the years, with nanomedicine approaches, especially liposomes gaining relevance. Additionally, the functionalization of liposomes with aptamers enables selective delivery to target cells. For instance, AT11 can serve as a targeting moiety for cancer cells due to its high affinity for nucleolin, a protein overexpressed on the cancer cell's surface. In this study, liposomes functionalized with AT11 are proposed as drug delivery systems for imiquimod (IQ), aiming to maximize its potential as an anticancer agent for HPV-related cancers. To this end, firstly liposomes were produced through the ethanol injection method, functionalized with AT11-TEG-Cholesteryl, and characterized using dynamic light scattering. The obtained liposomes presented suitable properties for cancer therapy (with sizes from 120 to 140 nm and low polydispersity PDI < 0.16) and were further evaluated in terms of potential anticancer effects. AT11 IQ-associated liposomes allowed a selective delivery of IQ towards a tongue cancer cell line (UPCI-SCC-154) relative to the non-malignant cell line (Het1A). Specifically, they induced a selective reduction of the cell viability (∼52 % versus ∼113 %; p < 0.0001), proliferation (∼68 % versus ∼102 %; p<0.0001) and increased cell death (∼7-fold increase; p < 0.0001)). Additionally, they decreased the migration (from ∼24 % to ∼8 %; p < 0.0001) and invasion (to 11 %; p = 0.0047) capacities of the cancer cells. In summary, the produced liposomes represent a promising approach to enhance the anticancer potential of IQ in head and neck cancer, particularly in tongue cancer.
Collapse
Affiliation(s)
- Jéssica Lopes-Nunes
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, Covilhã 6201-001, Portugal.
| |
Collapse
|
4
|
Lopes-Nunes J, Oliveira PA, Cruz C. Nanotherapy for human papillomavirus-associated cancers: breakthroughs and challenges. Trends Pharmacol Sci 2024; 45:781-797. [PMID: 39181737 DOI: 10.1016/j.tips.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024]
Abstract
Human papillomaviruses (HPVs) are well-known causative agents of several cancers, yet selective therapies remain under investigation. Nanoparticles, for instance, are emerging as promising solutions to enhance the delivery and efficacy of therapeutic approaches. Despite the increasing number of nanotherapies offering advantages over current treatments, only one has advanced to clinical trials. This review highlights recent advances in nanotherapies for HPV-associated cancers, focusing on the delivery of small molecules, gene-targeted therapies, and vaccines. Some of the challenges faced in nanotherapies translation for clinical application are discussed, emphasizing the most used preclinical models that fail to accurately predict human responses, thereby hindering proper evaluation of nanotherapies. Additionally, we explore and discuss alternative promising new preclinical models that could pave the way for more effective nanotherapeutic evaluations.
Collapse
Affiliation(s)
- Jéssica Lopes-Nunes
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building, and Sustainability of Agri-food Production, Vila Real, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001, Covilhã, Portugal.
| |
Collapse
|
5
|
Zhou J, Liu C, Amornphimoltham P, Cheong SC, Gutkind JS, Chen Q, Wang Z. Mouse Models for Head and Neck Squamous Cell Carcinoma. J Dent Res 2024; 103:585-595. [PMID: 38722077 DOI: 10.1177/00220345241240997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The prognosis and survival rate of head and neck squamous cell carcinoma (HNSCC) have remained unchanged for years, and the pathogenesis of HNSCC is still not fully understood, necessitating further research. An ideal animal model that accurately replicates the complex microenvironment of HNSCC is urgently needed. Among all the animal models for preclinical cancer research, tumor-bearing mouse models are the best known and widely used due to their high similarity to humans. Currently, mouse models for HNSCC can be broadly categorized into chemical-induced models, genetically engineered mouse models (GEMMs), and transplanted mouse models, each with its distinct advantages and limitations. In chemical-induced models, the carcinogen spontaneously initiates tumor formation through a multistep process. The resemblance of this model to human carcinogenesis renders it an ideal preclinical platform for studying HNSCC initiation and progression from precancerous lesions. The major drawback is that these models are time-consuming and, like human cancer, unpredictable in terms of timing, location, and number of lesions. GEMMs involve transgenic and knockout mice with gene modifications, leading to malignant transformation within a tumor microenvironment that recapitulates tumorigenesis in vivo, including their interaction with the immune system. However, most HNSCC GEMMs exhibit low tumor incidence and limited prognostic significance when translated to clinical studies. Transplanted mouse models are the most widely used in cancer research due to their consistency, availability, and efficiency. Based on the donor and recipient species matching, transplanted mouse models can be divided into xenografts and syngeneic models. In the latter, transplanted cells and host are from the same strain, making syngeneic models relevant to study functional immune system. In this review, we provide a comprehensive summary of the characteristics, establishment methods, and potential applications of these different HNSCC mouse models, aiming to assist researchers in choosing suitable animal models for their research.
Collapse
Affiliation(s)
- J Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - C Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - P Amornphimoltham
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - S C Cheong
- Translational Cancer Biology, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - J S Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Q Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Z Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Santos JMO, Tavares V, Gil da Costa RM, Medeiros R. MiR-150 and miR-155 expression predicts survival of cervical cancer patients: a translational approach to novel prognostic biomarkers. Biomarkers 2023; 28:617-627. [PMID: 37942654 DOI: 10.1080/1354750x.2023.2269320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION High-risk human papillomavirus (HPV) is the aetiological agent of cervical cancer, which remains the fourth leading cause of cancer death in women worldwide. K14-HPV16 transgenic mice are a model for HPV-induced cancers, which undergo multistep squamous carcinogenesis at the skin, that is histologically and molecularly similar to carcinogenesis of the human cervix. Previous screens of differentially regulated microRNAs (miRs) using K14-HPV16 mice showed a role for miR-21, miR-155, miR-150, miR-146a, miR-125b and miR-223 during carcinogenesis. METHODS We now aim to translate these observations into the clinical setting, using data provided by The Cancer Genome Atlas (TCGA) to explore whether those microRNAs can influence the survival of cervical cancer patients. RESULTS Results showed that low miR-150, miR-155 and miR-146a expression levels in primary tumours were associated with poor overall survival. However, only miR-150 and miR-155 were found to be independent predictors, increasing the risk of death. When patients were stratified by clinical stage, low miR-150, miR-155, miR-146a and miR-125b were associated with poor survival for clinical stages I and II. Only low miR-150 expression increased the death risk. CONCLUSION We conclude that miR-150 and miR-155 may be potentially applied as prognostic biomarkers in cervical cancer patients. However, further investigation is required to determine their applicability.
Collapse
Affiliation(s)
- Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS) of the University of Porto, Porto, Portugal
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal, University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), São Luís, Brazil
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, PortugalPorto
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS) of the University of Porto, Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, Porto, Portugal
- Research Department of the Portuguese League Against Cancer, Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Porto, Portugal
| |
Collapse
|
7
|
da Silva LL, Teles AM, Santos JMO, Souza de Andrade M, Medeiros R, Faustino-Rocha AI, Oliveira PA, dos Santos APA, Ferreira Lopes F, Braz G, Brito HO, da Costa RMG. Malignancy Associated with Low-Risk HPV6 and HPV11: A Systematic Review and Implications for Cancer Prevention. Cancers (Basel) 2023; 15:4068. [PMID: 37627099 PMCID: PMC10452364 DOI: 10.3390/cancers15164068] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
High-risk human papillomavirus (HPV) is etiologically related to cervical cancer, other anogenital cancers and oropharyngeal carcinomas. Low-risk HPV, especially HPV6 and HPV11, cause genital warts and laryngeal papillomas. However, the accumulating data suggests that HPV6 and HPV11 may cause malignant lesions at non-cervical anatomic sites. This review aims to estimate the proportions of single and dual HPV6/11 infections in multiple cancers reported in the last 10 years in the Cochrane, Embasa and PubMed databases. Secondly, the genomes of HPV6/11 were compared with the most common high-risk genotype, HPV16, to determine the similarities and differences. A total of 11 articles were selected, including between one and 334 HPV+ cancer patients. The frequencies of single or dual HPV6/11 infections ranged between 0-5.5% for penile and 0-87.5% for laryngeal cancers and were null for vulvar, vaginal and oral cancers. The genomic similarities between HPV6/11 and HPV16 mainly involved the E7 gene, indicating a limited ability to block cell differentiation. The presence of single or dual HPV6/11 infections in variable proportions of penile and laryngeal cancers support the vaccination strategies that cover these genotypes, not only for preventing genital warts but also for cancer prevention. Other risk factors and co-carcinogens are likely to participate in epithelial carcinogenesis associated with low-risk HPV.
Collapse
Affiliation(s)
- Leandro Lima da Silva
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
| | - Amanda Mara Teles
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
- Post-Graduate Program in Animal Health, State University of Maranhão, São Luís 65099-110, MA, Brazil
| | - Joana M. O. Santos
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marcelo Souza de Andrade
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.I.F.-R.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.I.F.-R.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Paula Azevedo dos Santos
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
- Post-Graduate Program in Health Sciences, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil
| | - Fernanda Ferreira Lopes
- Post-Graduate Program in Odontology, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil;
| | - Geraldo Braz
- Post-Graduate Program in Computing Sciences, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil;
| | - Haissa O. Brito
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
| | - Rui M. Gil da Costa
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.I.F.-R.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Cochicho D, Nunes A, Sobral D, Gomes JP, Esteves S, Mendonça J, Vieira L, Martins L, Cunha M, Montalvão P, Magalhães M, Gil da Costa RM, Félix A. Distribution and Clinical Significance of HPV16 Variants in Head and Neck Squamous Cell Carcinomas: Data from a Portuguese Cohort and Systematic Review. Pathobiology 2023; 90:333-343. [PMID: 37040716 DOI: 10.1159/000529723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/10/2023] [Indexed: 04/13/2023] Open
Abstract
INTRODUCTION Genomic variants of the human papillomavirus type 16 (HPV16) are thought to play differential roles in the susceptibility to head and neck squamous cell carcinomas (HNSCC) and its biological behaviour. This study aimed to establish the prevalence of HPV16 variants in an HNSCC cohort and associate them with clinical pathological characteristics and patient survival. METHODS We retrieved samples and clinical data from 68 HNSCC patients. DNA samples were available from tumour biopsy at the time of the primary diagnosis. Targeted next-generation sequencing was used to obtain whole-genome sequences, and variants were established based on phylogenetic classification. RESULTS 74% of samples clustered in lineage A, 5.7% in lineage B, 2.9% in lineage C, and 17.1% in lineage D. Comparative genome analysis revealed 243 single nucleotide variations. Of these, one hundred were previously reported, according to our systematic review. No significant associations with clinical pathological variables or patient survival were observed. The E6 amino acid variations E31G, L83V, and D25E and E7 N29S, associated with cervical cancer, were not observed, except for N29S in a single patient. CONCLUSION These results provide a comprehensive genomic map of HPV16 in HSNCC, highlighting tissue-specific characteristics which will help design tailored therapies for cancer patients.
Collapse
Affiliation(s)
- Daniela Cochicho
- Research Department, NOVA Medical School University, Lisbon, Portugal,
- Virology Laboratory from Clinical Pathology Department, IPOLFG Portuguese Oncology Institute Francisco Gentil, Lisbon, Portugal,
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Daniel Sobral
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Susana Esteves
- Clinical Research Unit, IPOLFG Portuguese Oncology Institute Francisco Gentil, Lisbon, Portugal
| | - Joana Mendonça
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Luis Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Luís Martins
- Virology Laboratory from Clinical Pathology Department, IPOLFG Portuguese Oncology Institute Francisco Gentil, Lisbon, Portugal
| | - Mario Cunha
- Virology Laboratory from Clinical Pathology Department, IPOLFG Portuguese Oncology Institute Francisco Gentil, Lisbon, Portugal
| | - Pedro Montalvão
- Otorhinolaryngology Department, IPOLFG Portuguese Oncology Institute Francisco Gentil, Lisbon, Portugal
| | - Miguel Magalhães
- Otorhinolaryngology Department, IPOLFG Portuguese Oncology Institute Francisco Gentil, Lisbon, Portugal
| | - Rui M Gil da Costa
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- Post-graduate Programme in Adult Health (PPGSAD), University Hospital (HUUFMA) and Morphology Department, Federal University of Maranhão, São Luís, Brazil
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Ana Félix
- Research Department, NOVA Medical School University, Lisbon, Portugal
- Pathology Department, IPOLFG Portuguese Oncology Institute Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
9
|
Chen PN, Chen XY, Chen GX, Luo L, Yan QZ, Ruan P, Li P, Yu DH. Squamous–columnar junction of Von Ebner’s glands may be a significant origin of squamous cell carcinomas in the base of the tongue. Front Oncol 2022; 12:1029404. [DOI: 10.3389/fonc.2022.1029404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
ObjectivesThe histological origin of base of the tongue (BOT) carcinomas is still elusive, and most studies have been focusing on the lingual tonsil. In this study, we sought to identify the existence of the squamous–columnar junction (SCJ) in the human Von Ebner’s glandular duct and explored the potential of that in forming squamous cell carcinomas in BOT.Materials and methodsThe specific genomes of BOT carcinoma were acquired and screened out by The Cancer Genome Atlas (TCGA) database analysis. The 4-nitroquinoline-1-oxide (4-NQO)-treated mouse model was used to explore the transformation of SCJ during cancerization. We used immunohistochemistry to confirm the characteristics of SCJ in human Von Ebner’s gland, which were further compared with those in the anus and cervix.ResultsThe SCJ in the human Von Ebner’s glandular duct was found to be similar to that of the cervix and anus. The transformation zone in the 4-NQO-treated mouse model had a multilayered epithelium structure similar to that of HPV16-transgenic mice. In human, the transformation zone of Von Ebner’s gland is also similar to that of the cervix and anus.ConclusionIt is the first time that the existence of SCJ in the opening of the human Von Ebner’s glandular duct was confirmed. The SCJ of Von Ebner’s glands may be a significant origin of squamous cell carcinomas in BOT.
Collapse
|
10
|
Characterization of the Human Papillomavirus 16 Oncogenes in K14HPV16 Mice: Sublineage A1 Drives Multi-Organ Carcinogenesis. Int J Mol Sci 2022; 23:ijms232012371. [PMID: 36293226 PMCID: PMC9604181 DOI: 10.3390/ijms232012371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The study of human papillomavirus (HPV)-induced carcinogenesis uses multiple in vivo mouse models, one of which relies on the cytokeratin 14 gene promoter to drive the expression of all HPV early oncogenes. This study aimed to determine the HPV16 variant and sublineage present in the K14HPV16 mouse model. This information can be considered of great importance to further enhance this K14HPV16 model as an essential research tool and optimize its use for basic and translational studies. Our study evaluated HPV DNA from 17 samples isolated from 4 animals, both wild-type (n = 2) and HPV16-transgenic mice (n = 2). Total DNA was extracted from tissues and the detection of HPV16 was performed using a qPCR multiplex. HPV16-positive samples were subsequently whole-genome sequenced by next-generation sequencing techniques. The phylogenetic positioning clearly shows K14HPV16 samples clustering together in the sub-lineage A1 (NC001526.4). A comparative genome analysis of K14HPV16 samples revealed three mutations to the human papillomaviruses type 16 sublineage A1 representative strain. Knowledge of the HPV 16 variant is fundamental, and these findings will allow the rational use of this animal model to explore the role of the A1 sublineage in HPV-driven cancer.
Collapse
|
11
|
Costa AC, Santos JMO, Medeiros-Fonseca B, Oliveira PA, Bastos MMSM, Brito HO, Gil da Costa RM, Medeiros R. Characterizing the Inflammatory Microenvironment in K14-HPV16 Transgenic Mice: Mast Cell Infiltration and MicroRNA Expression. Cancers (Basel) 2022; 14:2216. [PMID: 35565345 PMCID: PMC9099850 DOI: 10.3390/cancers14092216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the etiologic agent of several types of cancer. Mast cells’ role as either a driving or opposing force for cancer progression remains controversial. MicroRNAs are dysregulated in several HPV-induced cancers, and can influence mast cell biology. The aim of this study was to evaluate mast cell infiltration and to identify microRNAs potentially regulating this process. Transgenic male mice (K14-HPV16; HPV+) and matched wild-type mice (HPV−) received 7,12-Dimethylbenz[a]anthracene (DMBA) (or vehicle) over 17 weeks. Following euthanasia, chest skin and ear tissue samples were collected. Mast cell infiltration was evaluated by immunohistochemistry. MicroRNAs associated with mast cell infiltration were identified using bioinformatic tools. MicroRNA and mRNA relative expression was evaluated by RT-qPCR. Immunohistochemistry showed increased mast cell infiltration in HPV+ mice (p < 0.001). DMBA did not have any statistically significant influence on this distribution. Ear tissue of HPV+ mice showed increased mast cell infiltration (p < 0.01) when compared with chest skin samples. Additionally, reduced relative expression of miR-125b-5p (p = 0.008, 2−ΔΔCt = 2.09) and miR-223-3p (p = 0.013, 2−ΔΔCt = 4.42) seems to be associated with mast cell infiltration and increased expression of target gene Cxcl10. These results indicate that HPV16 may increase mast cell infiltration by down-regulating miR-223-3p and miR-125b-5p.
Collapse
Affiliation(s)
- Alexandra C. Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte), 4200-177 Porto, Portugal
| | - Joana M. O. Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Beatriz Medeiros-Fonseca
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (B.M.-F.); (P.A.O.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (B.M.-F.); (P.A.O.)
| | - Margarida M. S. M. Bastos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Haissa O. Brito
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), São Luís 65080-805, Brazil;
| | - Rui M. Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (B.M.-F.); (P.A.O.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), São Luís 65080-805, Brazil;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte), 4200-177 Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
12
|
Almeida J, Ferreira T, Santos S, Pires MJ, da Costa RMG, Medeiros R, Bastos MM, Neuparth MJ, Faustino-Rocha AI, Abreu H, Pereira R, Pacheco M, Gaivão I, Rosa E, Oliveira PA. The Red Seaweed Grateloupia turuturu Prevents Epidermal Dysplasia in HPV16-Transgenic Mice. Nutrients 2021; 13:nu13124529. [PMID: 34960081 PMCID: PMC8707361 DOI: 10.3390/nu13124529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The role of dietary profiles in promoting or reducing the risk of multiple types of cancer is increasingly clear, driving the search for balanced foods and nutraceuticals. The red seaweed Grateloupia turuturu has been used as human food showing a balanced nutritional profile. This study aims to test in vivo chemopreventive effects of G. turuturu against cutaneous pre-malignant lesions in transgenic mice for the human papillomavirus type 16 (HPV16). Forty-four female HPV+/− or HPV−/− mice received a standard diet or were supplemented with 10% G. turuturu for 22 consecutive days. Cutaneous lesions (ear and chest skin) were identified histologically. Complementarily, the weights and histology of internal organs as well as blood biochemical and DNA integrity parameters were also assessed. G. turuturu consistently reduced the incidence of epidermal dysplasia induced by HPV16 on both cutaneous sites. Moreover, biochemical, DNA integrity and histological analyses confirmed G. turuturu edibility as no signs of toxicity were found. Dietary supplementation with G. turuturu is an effective and safe chemopreventive strategy in this model.
Collapse
Affiliation(s)
- José Almeida
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Tiago Ferreira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Susana Santos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Maria J. Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
- Maranhão Tumour and DNA Biobank (BTMA), Post-graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
- Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- LPCC Research Department, Portuguese League against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Margarida M.S.M. Bastos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Maria J. Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
- Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Advanced Polytechnic and University Cooperative (CESPU), 4585 Gandra, Portugal
| | - Ana I. Faustino-Rocha
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Department of Zootechnics, School of Sciences and Technology, 7000-671 Évora, Portugal
| | - Helena Abreu
- ALGAplus, Lda., PCI-Creative Science Park, 3830-352 Ílhavo, Portugal; (H.A.); (R.P.)
| | - Rui Pereira
- ALGAplus, Lda., PCI-Creative Science Park, 3830-352 Ílhavo, Portugal; (H.A.); (R.P.)
- A4F Algae for Future, Estrada do Paço do Lumiar, Campus do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - Mário Pacheco
- Portugal CESAM—Centre for Environmental and Marine Studies and Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Isabel Gaivão
- Department of Genetic and Biotechnology, CECAV, UTAD, 5001-801 Vila Real, Portugal;
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
- Department of Agronomy, UTAD, 5001-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
- Correspondence: ; Tel.: +351-259350000; Fax: +351-259325058
| |
Collapse
|
13
|
Costa AC, Santos JMO, Gil da Costa RM, Medeiros R. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol 2021; 168:103541. [PMID: 34801696 DOI: 10.1016/j.critrevonc.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) are critical players in the tumor microenvironment, modulating cancer cell functions. TIICs are highly heterogenic and plastic and may either suppress cancers or provide support for tumor growth. A wide range of studies have shed light on how tumor-associated macrophages, dendritic cells, neutrophils, mast cells, natural killer cells and lymphocytes contribute for the establishment of several hallmarks of cancer and became the basis for successful immunotherapies. Many of those TIICs play pivotal roles in several hallmarks of cancer. This review contributes to elucidate the multifaceted roles of immune cells in cancer development, highlighting molecular components that constitute promising therapeutic targets. Additional studies are needed to clarify the relation between TIICs and hallmarks such as enabling replicative immortality, evading growth suppressors, sustaining proliferative signaling, resisting cell death and genome instability and mutation, to further explore their therapeutic potential and improve the outcomes of cancer patients.
Collapse
Affiliation(s)
- Alexandra C Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| |
Collapse
|
14
|
Differential Incidence of Tongue Base Cancer in Male and Female HPV16-Transgenic Mice: Role of Female Sex Hormone Receptors. Pathogens 2021; 10:pathogens10101224. [PMID: 34684173 PMCID: PMC8539196 DOI: 10.3390/pathogens10101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
A growing proportion of oropharyngeal squamous cell carcinomas (OPSCC) are associated with infection by high-risk human papillomavirus (HPV). For reasons that remain largely unknown, HPV+OPSCC is significantly more common in men than in women. This study aims to determine the incidence of OPSCC in male and female HPV16-transgenic mice and to explore the role of female sex hormone receptors in the sexual predisposition for HPV+ OPSCC. The tongues of 30-weeks-old HPV16-transgenic male (n = 80) and female (n = 90) and matched wild-type male (n = 10) and female (n = 10) FVB/n mice were screened histologically for intraepithelial and invasive lesions in 2017 at the Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Portugal. Expression of estrogen receptors alpha (ERα) and beta (ERβ), progesterone receptors (PR) and matrix metalloproteinase 2 (MMP2) was studied immunohistochemically. Collagen remodeling was studied using picrosirius red. Female mice showed robust ERα and ERβ expression in intraepithelial and invasive lesions, which was accompanied by strong MMP2 expression and marked collagen remodeling. Male mice showed minimal ERα, ERβ and MMP2 expression and unaltered collagen patterns. These results confirm the association of HPV16 with tongue base cancer in both sexes. The higher cancer incidence in female versus male mice contrasts with data from OPSCC patients and is associated with enhanced ER expression via MMP2 upregulation.
Collapse
|
15
|
Cytokeratins (CK7 and CK20) Genes Expression Association with Clinicopathological Indices in Oral Squamous Cell Carcinoma and Dysplastic Oral Epithelium. Rep Biochem Mol Biol 2021; 10:126-134. [PMID: 34277876 DOI: 10.52547/rbmb.10.1.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 01/12/2023]
Abstract
Background High prevalence of oral squamous cell carcinoma (OSCC) demands the additional novel biological markers. Due to the established roles of cytokeratin in the prognosis of metastasis evaluation the relation of expression of both CK7 and CK20 in OSCC compared to the dysplastic oral epithelium biopsies with clinicopathological factors were investigated. Methods We examined the coordinate mRNA expression of cytokeratin 7 (CK7) and cytokeratin 20 (CK20) using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 110 biopsies of oral squamous epithelium samples including 72 tumoral and 38 dysplastic biopsies. We also collected demographic and pathological data including tumor stage and grade from our patients. Results There was a significant difference in CK7 and CK20 gene expression between OSCC and dysplastic samples (p< 0.001). Further, their mean expression in OSCC samples was significantly higher compared to dysplastic samples. Relative mRNA levels of CK7 and CK20 showed that their mean expression in OSCC grade I was significantly lower than other grades (p< 0.01). The relationship between CK7 and CK20 mRNA expression and age or gender was not significant (p> 0.05). Samples in the advanced stage of disease had significantly higher CK7 and CK20 expression compared to early-stage samples of OSCC specimens (p= 0.001). Conclusion We found an increase in CK7 and CK20 mRNA levels in grade III OSCC samples compared to other grades. This finding suggests a potential role for CK7 and CK20 in oral mucosal carcinogenesis and OSCC prognosis.
Collapse
|
16
|
Dias TR, Santos JMO, Gil da Costa RM, Medeiros R. Long non-coding RNAs regulate the hallmarks of cancer in HPV-induced malignancies. Crit Rev Oncol Hematol 2021; 161:103310. [PMID: 33781867 DOI: 10.1016/j.critrevonc.2021.103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the most frequent sexually transmitted agent worldwide and is responsible for approximately 5% of human cancers. Identifying novel biomarkers and therapeutic targets for these malignancies requires a deeper understanding of the mechanisms involved in the progression of HPV-induced cancers. Long non-coding RNAs (lncRNAs) are crucial in the regulation of biological processes. Importantly, these molecules are key players in the progression of multiple malignancies and are able to regulate the development of the different hallmarks of cancer. This review highlights the action of lncRNAs in the regulation of cellular processes leading to the typical hallmarks of cancer. The regulation of lncRNAs by HPV oncogenes, their targets and also their mechanisms of action are also discussed, in the context of HPV-induced malignancies. Overall, accumulating data indicates that lncRNAs may have a significant potential to become useful tools for clinical practice as disease biomarkers or therapy targets.
Collapse
Affiliation(s)
- Tânia R Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Tumour and DNA Biobank, Federal University of Maranhão (UFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
17
|
Gil da Costa RM, Neto T, Estêvão D, Moutinho M, Félix A, Medeiros R, Lopes C, Bastos MMSM, Oliveira PA. Ptaquiloside from bracken (Pteridium spp.) promotes oral carcinogenesis initiated by HPV16 in transgenic mice. Food Funct 2021; 11:3298-3305. [PMID: 32222741 DOI: 10.1039/d0fo00207k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bracken (Pteridium spp.) is a common weed that is consumed as food especially in Asia, and is suspected of promoting carcinogenesis induced by papillomaviruses in the digestive and urinary systems. This is particularly worrying because the incidence of head-and-neck cancers associated with the human papillomavirus (HPV) is rapidly increasing, and HPV co-carcinogens urgently need to be identified. This study tested the hypothesis that two bracken compounds, ptaquiloside and rutin, are able to promote head-and-neck and bladder carcinogenesis in HPV16-transgenic mice. Expression of HPV16 E6 and E7 in oral and bladder tissues was confirmed using quantitative real-time PCR. Mice were exposed orally to ptaquiloside (0.5 mg per animal per week for 10 weeks from 20 weeks-old) or rutin (413 mg kg-1 day-1 for 24 weeks from 6 weeks-old), sacrificed at 30 weeks-old and studied histologically. HPV16 E6 and E7 expression was higher in oral mucosa compared with the bladder (p 0.001). Importantly, ptaquiloside, but not rutin, increased the incidence of oral squamous cell carcinomas (p = 1.2 × 10-8) in HPV16-transgenic mice. Also, cancers of unexposed transgenic mice were restricted to the tongue base, while ptaquiloside-exposed mice showed multifocal lesions throughout the oral cavity. Wild-type controls showed no oral lesions. No bladder lesions were observed in any treated or untreated group. These results indicate that ptaquiloside from bracken is able to promote oral carcinogenesis initiated by HPV16. Rutin did not show any carcinogenic effects in this model. The absence of bladder lesions may reflect an insufficient incubation period or factors related to the specific viral oncogenes present in this model.
Collapse
Affiliation(s)
- Rui M Gil da Costa
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. and Grupo de Oncologia Molecular e Patologia Viral, CI-IPOP, Instituto Português de Oncologia do Porto, Porto, Portugal and Centro de Investigação e Tecnologia de Ciências Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - Tiago Neto
- Grupo de Oncologia Molecular e Patologia Viral, CI-IPOP, Instituto Português de Oncologia do Porto, Porto, Portugal and ICBAS, Universidade do Porto, Porto, Portugal
| | - Diogo Estêvão
- Grupo de Oncologia Molecular e Patologia Viral, CI-IPOP, Instituto Português de Oncologia do Porto, Porto, Portugal and Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Magda Moutinho
- Centro de Investigação e Tecnologia de Ciências Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - Ana Félix
- Nova Medical School, Universidade Nova de Lisboa, Lisboa, Portugal and Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa, Lisboa, Portugal
| | - Rui Medeiros
- Grupo de Oncologia Molecular e Patologia Viral, CI-IPOP, Instituto Português de Oncologia do Porto, Porto, Portugal and Faculdade de Medicina, Universidade do Porto, Porto, Portugal and Serviço de Virologia, Instituto Português de Oncologia do Porto, Porto, Portugal and Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte, Porto, Portugal and CEBIMED, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | | | | | - Paula A Oliveira
- Centro de Investigação e Tecnologia de Ciências Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal and Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| |
Collapse
|
18
|
Medeiros-Fonseca B, Cubilla A, Brito H, Martins T, Medeiros R, Oliveira P, Gil da Costa RM. Experimental Models for Studying HPV-Positive and HPV-Negative Penile Cancer: New Tools for An Old Disease. Cancers (Basel) 2021; 13:cancers13030460. [PMID: 33530343 PMCID: PMC7865362 DOI: 10.3390/cancers13030460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Penile cancer is an uncommon and understudied malignancy that is most commonly diagnosed in developing countries. Therapeutic advances have been slow, in part due to the lack of in vitro and in vivo models for testing new drugs before performing clinical trials. Recently, this difficulty has been partly overcome and multiple new pre-clinical models were reported. These important developments will help develop new therapies for penile cancer patients. The present review summarizes and discusses the available data concerning the pre-clinical models of penile cancer and their uses. Comparisons are drawn between different models, allowing researchers to choose the most adequate setting for their experiments. The remaining gaps in this array of penile cancer models are also discussed, in particular the lack of models for studying metastatic disease and cell lines representing tumors associated with human papillomavirus. Abstract Penile cancer is an uncommon malignancy that occurs most frequently in developing countries. Two pathways for penile carcinogenesis are currently recognized: one driven by human papillomavirus (HPV) infection and another HPV-independent route, associated with chronic inflammation. Progress on the clinical management of this disease has been slow, partly due to the lack of preclinical models for translational research. However, exciting recent developments are changing this landscape, with new in vitro and in vivo models becoming available. These include mouse models for HPV+ and HPV− penile cancer and multiple cell lines representing HPV− lesions. The present review addresses these new advances, summarizing available models, comparing their characteristics and potential uses and discussing areas that require further improvement. Recent breakthroughs achieved using these models are also discussed, particularly those developments pertaining to HPV-driven cancer. Two key aspects that still require improvement are the establishment of cell lines that can represent HPV+ penile carcinomas and the development of mouse models to study metastatic disease. Overall, the growing array of in vitro and in vivo models for penile cancer provides new and useful tools for researchers in the field and is expected to accelerate pre-clinical research on this disease.
Collapse
Affiliation(s)
- Beatriz Medeiros-Fonseca
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, UTAD, 5001-801 Vila Real, Portugal; (B.M.-F.); (T.M.); (P.O.)
| | - Antonio Cubilla
- Instituto de Patología e Investigación and Universidad Nacional de Asunción, Asunción, Paraguay;
| | - Haissa Brito
- Maranhão Tumour and DNA Biobank (BTMA), Post-graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil;
| | - Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, UTAD, 5001-801 Vila Real, Portugal; (B.M.-F.); (T.M.); (P.O.)
- Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, CI-IPOP, IPO-Porto, 4200-072 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Virology Service, IPO-Porto, 4200-072 Porto, Portugal
- Biomedicine Research Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Paula Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, UTAD, 5001-801 Vila Real, Portugal; (B.M.-F.); (T.M.); (P.O.)
- Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, UTAD, 5001-801 Vila Real, Portugal; (B.M.-F.); (T.M.); (P.O.)
- Maranhão Tumour and DNA Biobank (BTMA), Post-graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil;
- Molecular Oncology and Viral Pathology Group, CI-IPOP, IPO-Porto, 4200-072 Porto, Portugal;
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +55-9132728000
| |
Collapse
|
19
|
Medeiros-Fonseca B, Mestre VF, Estêvão D, Sánchez DF, Cañete-Portillo S, Fernández-Nestosa MJ, Casaca F, Silva S, Brito H, Félix A, Medeiros R, Colaço B, Oliveira PA, Bastos MM, Nelson PS, Vakar-Lopez F, Gaivão I, Brito L, Lopes C, Cubilla AL, Gil da Costa RM. HPV16 induces penile intraepithelial neoplasia and squamous cell carcinoma in transgenic mice: first mouse model for HPV-related penile cancer. J Pathol 2020; 251:411-419. [PMID: 32488868 DOI: 10.1002/path.5475] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Penile cancer is an under-studied disease that occurs more commonly in developing countries and 30-50% of cases show high-risk human papillomavirus (HPV) infection. Therapeutic advances are slow, largely due to the absence of animal models for translational research. Here, we report the first mouse model for HPV-related penile cancer. Ten-week-old mice expressing all the HPV16 early genes under control of the cytokeratin 14 (Krt14) gene promoter and matched wild-type controls were exposed topically to dimethylbenz(a)anthracene (DMBA) or vehicle for 16 weeks. At 30 weeks of age, mice were sacrificed for histological analysis. Expression of Ki67, cytokeratin 14, and of the HPV16 oncogenes E6 and E7 was confirmed using immunohistochemistry and quantitative PCR, respectively. HPV16-transgenic mice developed intraepithelial lesions including condylomas and penile intraepithelial neoplasia (PeIN). Lesions expressed cytokeratin 14 and the HPV16 oncogenes E6 and E7 and showed deregulated cell proliferation, demonstrated by Ki67-positive supra-basal cells. HPV16-transgenic mice exposed to DMBA showed increased PeIN incidence and squamous cell carcinoma. Malignant lesions showed varied histological features closely resembling those of HPV-associated human penile cancers. Wild-type mice showed no malignant or pre-malignant lesions even when exposed to DMBA. These observations provide the first experimental evidence to support the etiological role of HPV16 in penile carcinogenesis. Importantly, this is the first mouse model to recapitulate key steps of HPV-related penile carcinogenesis and to reproduce morphological and molecular features of human penile cancer, providing a unique in vivo tool for studying its biology and advancing basic and translational research. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Verónica F Mestre
- CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - Diogo Estêvão
- Grupo de Oncologia Molecular e Patologia Viral, CI-IPOP, IPO-Porto, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Diego F Sánchez
- Instituto de Patología e Investigación and Universidad Nacional de Asunción, Asunción, Paraguay
| | - Sofía Cañete-Portillo
- Instituto de Patología e Investigación and Universidad Nacional de Asunción, Asunción, Paraguay
| | | | - Fátima Casaca
- Botelho Moniz Análises Clínicas (BMAC), Porto, Portugal
| | - Sandra Silva
- Botelho Moniz Análises Clínicas (BMAC), Porto, Portugal
| | - Haissa Brito
- Biobanco de Tumores e DNA do Maranhão, PPGSAD, Universidade Federal do Maranhão (UFMA), São Luís, Brazil
| | - Ana Félix
- Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal.,Serviço de Anatomia Patológica, IPO-Lisboa, Lisbon, Portugal
| | - Rui Medeiros
- Grupo de Oncologia Molecular e Patologia Viral, CI-IPOP, IPO-Porto, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Serviço de Virologia, IPO-Porto, Porto, Portugal.,Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte, Porto, Portugal.,CEBIMED, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | - Bruno Colaço
- CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal.,Departamento de Zootecnia, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - Paula A Oliveira
- CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal.,Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | | | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington, Seattle, WA, USA
| | - Funda Vakar-Lopez
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Isabel Gaivão
- CECAV and Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luciane Brito
- Biobanco de Tumores e DNA do Maranhão, PPGSAD, Universidade Federal do Maranhão (UFMA), São Luís, Brazil
| | - Carlos Lopes
- Botelho Moniz Análises Clínicas (BMAC), Porto, Portugal.,Grupo de Patologia Experimental, Ci-IPOP, IPO-Porto, Porto, Portugal.,Departamento de Patologia e Imunologia Molecular, ICBAS, Universidade do Porto, Porto, Portugal
| | - Antonio L Cubilla
- Instituto de Patología e Investigación and Universidad Nacional de Asunción, Asunción, Paraguay
| | - Rui M Gil da Costa
- CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal.,Grupo de Oncologia Molecular e Patologia Viral, CI-IPOP, IPO-Porto, Porto, Portugal.,Biobanco de Tumores e DNA do Maranhão, PPGSAD, Universidade Federal do Maranhão (UFMA), São Luís, Brazil.,LEPABE, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
20
|
Human Papillomavirus 16-Transgenic Mice as a Model to Study Cancer-Associated Cachexia. Int J Mol Sci 2020; 21:ijms21145020. [PMID: 32708666 PMCID: PMC7404304 DOI: 10.3390/ijms21145020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by general inflammation, weight loss and muscle wasting, partly mediated by ubiquitin ligases such as atrogin-1, encoded by Fbxo32. Cancers induced by high-risk human papillomavirus (HPV) include anogenital cancers and some head-and-neck cancers and are often associated with cachexia. The aim of this study was to assess the presence of cancer cachexia in HPV16-transgenic mice with or without exposure to the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). Male mice expressing the HPV16 early region under the control of the cytokeratin 14 gene promoter (K14-HPV16; HPV+) and matched wild-type mice (HPV-) received DMBA (or vehicle) topically over 17 weeks of the experiment. Food intake and body weight were assessed weekly. The gastrocnemius weights and Fbxo32 expression levels were quantified at sacrifice time. HPV-16-associated lesions in different anatomic regions were classified histologically. Although unexposed HPV+ mice showed higher food intake than wild-type matched group (p < 0.01), they presented lower body weights (p < 0.05). This body weight trend was more pronounced when comparing DMBA-exposed groups (p < 0.01). The same pattern was observed in the gastrocnemius weights (between the unexposed groups: p < 0.05; between the exposed groups: p < 0.001). Importantly, DMBA reduced body and gastrocnemius weights (p < 0.01) when comparing the HPV+ groups. Moreover, the Fbxo32 gene was overexpressed in DMBA-exposed HPV+ compared to control mice (p < 0.05). These results show that K14-HPV16 mice closely reproduce the anatomic and molecular changes associated with cancer cachexia and may be a good model for preclinical studies concerning the pathogenesis of this syndrome.
Collapse
|
21
|
Reis DRA, Medeiros-Fonseca B, Costa JM, de Oliveira Neto CP, Gil da Costa RM, Oliveira PA, Medeiros R, Bastos MMSM, Brito HO, Brito LMO. HPV infection as a risk factor for atherosclerosis: A connecting hypothesis. Med Hypotheses 2020; 144:109979. [PMID: 32570162 DOI: 10.1016/j.mehy.2020.109979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023]
Abstract
Atheromatous plaques occurring in large arteries are common and life-threatening lesions. Multiple factors are involved in the pathogenesis of atheromatous plaques, such as hyperlipidaemia and hypercholesterolaemia, high blood pressure and chronic systemic inflammation. Recent findings have suggested that infection with high-risk human papillomavirus (HPV) may increase the risk of developing atheromatous plaques. However, HPV is considered a tissue-specific virus with a strong tropism towards squamous epithelial cells, and the mechanisms whereby it may promote the development of atheromas remain unclear. Here, we propose a connecting hypothesis to explain the possible causative role of HPV on atheroma development. We hypothesize that HPV infection may promote atheroma formation in infected patients by enhancing systemic inflammation or by directly targeting blood vessels via nucleic acids carried by extracellular vesicles such as exosomes. The pro-inflammatory effects of HPV and the release of extracellular vesicles by HPV-transformed cells are well documented in scientific literature. Possible experimental approaches to test this hypothesis are also discussed, especially experiments employing transgenic mice bearing HPV16 transgenes. If correct, this hypothesis would have major implications for the prevention of cardiovascular diseases, especially due to the preventable nature of HPV infection through vaccination.
Collapse
Affiliation(s)
- D R A Reis
- Tumor and DNA Biobank, Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís, MA, Brazil
| | - B Medeiros-Fonseca
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - J M Costa
- Tumor and DNA Biobank, Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís, MA, Brazil
| | - C P de Oliveira Neto
- Tumor and DNA Biobank, Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís, MA, Brazil
| | - R M Gil da Costa
- Tumor and DNA Biobank, Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís, MA, Brazil; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - P A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - R Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; Research Dept., Portuguese League Against Cancer - Regional Nucleus of the North, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Biomedical Research Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| | - M M S M Bastos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - H O Brito
- Tumor and DNA Biobank, Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís, MA, Brazil
| | - L M O Brito
- Tumor and DNA Biobank, Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
22
|
A Mouse Model of Oropharyngeal Papillomavirus-Induced Neoplasia Using Novel Tools for Infection and Nasal Anesthesia. Viruses 2020; 12:v12040450. [PMID: 32316091 PMCID: PMC7232375 DOI: 10.3390/v12040450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022] Open
Abstract
Human head and neck cancers that develop from the squamous cells of the oropharynx (Oropharyngeal Squamous Cell Carcinomas or OPSCC) are commonly associated with the papillomavirus infection. A papillomavirus infection-based mouse model of oropharyngeal tumorigenesis would be valuable for studying the development and treatment of these tumors. We have developed an efficient system using the mouse papillomavirus (MmuPV1) to generate dysplastic oropharyngeal lesions, including tumors, in the soft palate and the base of the tongue of two immune-deficient strains of mice. To maximize efficiency and safety during infection and endoscopy, we have designed a nose cone for isoflurane-induced anesthesia that takes advantage of a mouse’s need to breathe nasally and has a large window for oral manipulations. To reach and infect the oropharynx efficiently, we have repurposed the Greer Pick allergy testing device as a virus delivery tool. We show that the Pick can be used to infect the epithelium of the soft palate and the base of the tongue of mice directly, without prior scarification. The ability to induce and track oropharyngeal papillomavirus-induced tumors in the mouse, easily and robustly, will facilitate the study of oropharyngeal tumorigenesis and potential treatments.
Collapse
|