1
|
Chen C, Li Y, Wei W, Lu Y, Zou B, Zhang L, Shan J, Zhu Y, Wang S, Wu H, Su H, Zhou G. A precise microdissection strategy enabled spatial heterogeneity analysis on the targeted region of formalin-fixed paraffin-embedded tissues. Talanta 2024; 278:126501. [PMID: 38963978 DOI: 10.1016/j.talanta.2024.126501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
In recent years, the development of spatial transcriptomic technologies has enabled us to gain an in-depth understanding of the spatial heterogeneity of gene expression in biological tissues. However, a simple and efficient tool is required to analyze multiple spatial targets, such as mRNAs, miRNAs, or genetic mutations, at high resolution in formalin-fixed paraffin-embedded (FFPE) tissue sections. In this study, we developed hydrogel pathological sectioning coupled with the previously reported Sampling Junior instrument (HPSJ) to assess the spatial heterogeneity of multiple targets in FFPE sections at a scale of 180 μm. The HPSJ platform was used to demonstrate the spatial heterogeneity of 9 ferroptosis-related genes (TFRC, NCOA4, FTH1, ACSL4, LPCAT3, ALOX12, SLC7A11, GLS2, and GPX4) and 2 miRNAs (miR-185-5p and miR522) in FFPE tissue samples from patients with triple-negative breast cancer (TNBC). The results validated the significant heterogeneity of ferroptosis-related mRNAs and miRNAs. In addition, HPSJ confirmed the spatial heterogeneity of the L858R mutation in 7 operation-sourced and 4 needle-biopsy-sourced FFPE samples from patients with lung adenocarcinoma (LUAD). The successful detection of clinical FFPE samples indicates that HPSJ is a precise, high-throughput, cost-effective, and universal platform for analyzing spatial heterogeneity, which is beneficial for elucidating the mechanisms underlying drug resistance and guiding the prescription of mutant-targeted drugs in patients with tumors.
Collapse
Affiliation(s)
- Chen Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China
| | - Ying Li
- Department of Pathology Center of Diagnostic of Pathology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China
| | - Wei Wei
- Department of Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China
| | - Yin Lu
- Department of Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Likun Zhang
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Jingwen Shan
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Yue Zhu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Shanshan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiping Wu
- Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Hua Su
- Department of Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210018, China.
| | - Guohua Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China; Department of Clinical Pharmacy, State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
2
|
Coope RJ, Pleasance S, Pandoh P, Schlosser C, Corbett RD, Marra MA. Rapid microdissection of tissue sections via laser ablation. J Clin Pathol 2024; 77:430-434. [PMID: 38429092 DOI: 10.1136/jcp-2023-209361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
We demonstrate a method for tissue microdissection using scanning laser ablation that is approximately two orders of magnitude faster than conventional laser capture microdissection. Our novel approach uses scanning laser optics and a slide coating under the tissue that can be excited by the laser to selectively eject regions of tissue for further processing. Tissue was dissected at 0.117 s/mm2 without reduction in yield, sequencing insert size or base quality compared with undissected tissue. From eight cases, 58-416 mm2 of tissue was obtained from one to four slides in 7-48 seconds total dissection time per case. These samples underwent exome sequencing and we found the variant allelic fraction increased in regions enriched for tumour as expected. This suggests that our ablation technique may be useful as a tool in both clinical and research labs.
Collapse
Affiliation(s)
- Robin Jn Coope
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Stephen Pleasance
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Pawan Pandoh
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Colin Schlosser
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Richard D Corbett
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
- Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Davis S, Scott C, Oetjen J, Charles PD, Kessler BM, Ansorge O, Fischer R. Deep topographic proteomics of a human brain tumour. Nat Commun 2023; 14:7710. [PMID: 38001067 PMCID: PMC10673928 DOI: 10.1038/s41467-023-43520-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The spatial organisation of cellular protein expression profiles within tissue determines cellular function and is key to understanding disease pathology. To define molecular phenotypes in the spatial context of tissue, there is a need for unbiased, quantitative technology capable of mapping proteomes within tissue structures. Here, we present a workflow for spatially-resolved, quantitative proteomics of tissue that generates maps of protein abundance across tissue slices derived from a human atypical teratoid-rhabdoid tumour at three spatial resolutions, the highest being 40 µm, to reveal distinct abundance patterns of thousands of proteins. We employ spatially-aware algorithms that do not require prior knowledge of the fine tissue structure to detect proteins and pathways with spatial abundance patterns and correlate proteins in the context of tissue heterogeneity and cellular features such as extracellular matrix or proximity to blood vessels. We identify PYGL, ASPH and CD45 as spatial markers for tumour boundary and reveal immune response-driven, spatially-organised protein networks of the extracellular tumour matrix. Overall, we demonstrate spatially-aware deep proteo-phenotyping of tissue heterogeneity, to re-define understanding tissue biology and pathology at the molecular level.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Philip D Charles
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| |
Collapse
|
4
|
Pisapia P, L'Imperio V, Galuppini F, Sajjadi E, Russo A, Cerbelli B, Fraggetta F, d'Amati G, Troncone G, Fassan M, Fusco N, Pagni F, Malapelle U. The evolving landscape of anatomic pathology. Crit Rev Oncol Hematol 2022; 178:103776. [PMID: 35934262 DOI: 10.1016/j.critrevonc.2022.103776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/11/2022] Open
Abstract
Anatomic pathology has changed dramatically in recent years. Although the microscopic assessment of tissues and cells is and will remain the mainstay of cancer diagnosis molecular profiling has become equally relevant. Thus, to stay abreast of the evolving landscape of today's anatomic pathology, modern pathologists must be able to master the intricate world of predictive molecular pathology. To this aim, pathologists have had to acquire additional knowledge to bridge the gap between clinicians and molecular biologists. This new role is particularly important, as cases are now collegially discussed in molecular tumor boards (MTBs). Moreover, as opposed to traditional pathologists, modern pathologists have also adamantly embraced innovation while keeping a constant eye on tradition. In this article, we depict the highlights and shadows of the upcoming "Anatomic Pathology 2.0" by placing particular emphasis on the pathologist's growing role in the management of cancer patients.
Collapse
Affiliation(s)
- Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, University of Milan-Bicocca (UNIMIB), Monza, Italy
| | - Francesca Galuppini
- Unit of Surgical Pathology, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Bruna Cerbelli
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Filippo Fraggetta
- Pathology Unit, Gravina Hospital Caltagirone, ASP Catania, Caltagirone, Italy
| | - Giulia d'Amati
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Matteo Fassan
- Unit of Surgical Pathology, Department of Medicine (DIMED), University of Padua, Padua, Italy; Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Veneto, Italy.
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University of Milan-Bicocca (UNIMIB), Monza, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Liotta LA, Pappalardo PA, Carpino A, Haymond A, Howard M, Espina V, Wulfkuhle J, Petricoin E. Laser Capture Proteomics: spatial tissue molecular profiling from the bench to personalized medicine. Expert Rev Proteomics 2021; 18:845-861. [PMID: 34607525 PMCID: PMC10720974 DOI: 10.1080/14789450.2021.1984886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Laser Capture Microdissection (LCM) uses a laser to isolate, or capture, specific cells of interest in a complex heterogeneous tissue section, under direct microscopic visualization. Recently, there has been a surge of publications using LCM for tissue spatial molecular profiling relevant to a wide range of research topics. AREAS COVERED We summarize the many advances in tissue Laser Capture Proteomics (LCP) using mass spectrometry for discovery, and protein arrays for signal pathway network mapping. This review emphasizes: a) transition of LCM phosphoproteomics from the lab to the clinic for individualized cancer therapy, and b) the emerging frontier of LCM single cell molecular analysis combining proteomics with genomic, and transcriptomic analysis. The search strategy was based on the combination of MeSH terms with expert refinement. EXPERT OPINION LCM is complemented by a rich set of instruments, methodology protocols, and analytical A.I. (artificial intelligence) software for basic and translational research. Resolution is advancing to the tissue single cell level. A vision for the future evolution of LCM is presented. Emerging LCM technology is combining digital and AI guided remote imaging with automation, and telepathology, to a achieve multi-omic profiling that was not previously possible.
Collapse
Affiliation(s)
- Lance A. Liotta
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Philip A. Pappalardo
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Alan Carpino
- Fluidigm Corporation, South San Francisco, CA, USA
| | - Amanda Haymond
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Marissa Howard
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Virginia Espina
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Julie Wulfkuhle
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Emanuel Petricoin
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|