1
|
Pisano C, Asta L, Sbrigata A, Balistreri CR. A Narrative Review: Syndecans in Aortic Aneurysm Pathogenesis and Course-Biomarkers and Targets? Int J Mol Sci 2025; 26:1211. [PMID: 39940978 PMCID: PMC11818338 DOI: 10.3390/ijms26031211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The maintenance of the integrity of the entire endothelium, glycocalyx included, and, therefore, of tissue aorta's homeostasis, depends on the expressions of several molecular pathways and their interactions, such as syndecan molecules. Alterations in syndecans, i.e., quantitative alterations or linking to their shedding, contributes to invoking endothelium dysfunction, which causes damage to the vessel wall due to the increased production of growth-stimulating and pro-inflammatory gene products. Inflammatory processes negatively affect the integrity of the endothelial glycocalyx, a dynamic layer of the luminal portion of endothelial cells composed of proteoglycans, glycoproteins, and glycosaminoglycans, i.e., syndecans. In turn, structural alterations in the endothelial glycocalyx influence the coagulative state, increasing pro-thrombotic processes. The family of syndecans constitutes a major component of glycocalyx or, more accurately, the major source of cell surface heparan sulfate. It encompasses four components: syndecan-1, syndecan-2, and syndecan-4 (with syndecan-3 only expressed in neural tissue), which have a fundamental role in regulating the events of acute and chronic aorta damage subsequently correlated with the formation of aneurysms. As such, the aim of our review is to highlight the current knowledge on the roles of syndecans and to analyze their relationship with the pathological processes of the aortic wall based on the most recent literature.
Collapse
Affiliation(s)
- Calogera Pisano
- Cardiac Surgery Unit, Department of Precision Medicine in Medical Surgical and Critical Area (Me.Pre.C.C.), University of Palermo, 90134 Palermo, Italy;
| | - Laura Asta
- Department of Cardiac Surgery, Clinical Mediterranean, 80122 Naples, Italy;
| | - Adriana Sbrigata
- Cardiac Surgery Unit, Department of Precision Medicine in Medical Surgical and Critical Area (Me.Pre.C.C.), University of Palermo, 90134 Palermo, Italy;
| | - Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
2
|
Vaideeswar P, Udayaravi S. Aortopathy - A surgical pathology experience. INDIAN J PATHOL MICR 2025; 68:130-136. [PMID: 38975720 DOI: 10.4103/ijpm.ijpm_1008_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Aortopathy is a non-inflammatory and non-atherosclerotic disease of aorta that results from significant 'degenerative' changes in the media. This often leads to thoracic aortic aneurysms and/or dissections in young individuals. AIMS This study aimed to analyze the clinical and pathological features of aortic resections performed for aortopathy. MATERIALS AND METHODS Over the span of 15 years (2008-2022), all surgically resected specimens of aorta showing aortopathy in all age groups were studied. Particular attention was paid to the changes in the media to assess the extent, grade and severity of aortopathy. RESULTS During the 15-year study period, 73 surgically resected specimens of the ascending aorta showed features of aortopathy. There were 48 males and 25 females, who had chief complaints of dyspnea, chest pain and palpitation. The aortopathic manifestations observed were ascending aortic aneurysms (36 patients, 49.3%), aortic dissections (21 patients, 28.8%) and aneurysms with dissections (16 patients, 21.9%). Bicuspid aortic valve (24 cases), Marfan syndrome (13 cases) and hypertension (12 cases) were commonly identified. There was one case each of Loeys-Dietz syndrome, and aortopathy possibly related to blunt chest trauma. In a significant proportion of patients (22 cases), the cause remained elusive. Moderate to severe aortopathy was observed in 60 cases (82.2%). CONCLUSION This study helps in standardizing the histological parameters of aortopathy. In patients where the cause is uncertain despite of detailed clinico-radiological assessment, there is a need for molecular and genetic studies.
Collapse
Affiliation(s)
- Pradeep Vaideeswar
- Department of Pathology (Cardiovascular and Thoracic Division), Seth GS Medical College, Mumbai, Maharashta, India
| | - Sujit Udayaravi
- Department of Pathology, Seth GS Medical College, Mumbai, Maharashta, India
| |
Collapse
|
3
|
Martin-Blazquez A, Martin-Lorenzo M, Santiago-Hernandez A, Heredero A, Donado A, Lopez JA, Anfaiha-Sanchez M, Ruiz-Jimenez R, Esteban V, Vazquez J, Aldamiz-Echevarria G, Alvarez-Llamas G. Analysis of Vascular Smooth Muscle Cells from Thoracic Aortic Aneurysms Reveals DNA Damage and Cell Cycle Arrest as Hallmarks in Bicuspid Aortic Valve Patients. J Proteome Res 2024; 23:3012-3024. [PMID: 38594816 PMCID: PMC11301675 DOI: 10.1021/acs.jproteome.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.
Collapse
Affiliation(s)
- Ariadna Martin-Blazquez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Marta Martin-Lorenzo
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | | | - Angeles Heredero
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Alicia Donado
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Juan A Lopez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miriam Anfaiha-Sanchez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Rocio Ruiz-Jimenez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Vanesa Esteban
- Department
of Allergy and Immunology, IIS-Fundación
Jiménez Díaz, Fundación Jiménez Díaz
Hospital-UAM, 28040 Madrid, Spain
- Faculty
of Medicine and Biomedicine, Alfonso X El
Sabio University, 28691 Madrid, Spain
| | - Jesus Vazquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | | - Gloria Alvarez-Llamas
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
- RICORS2040, Fundación Jiménez Díaz, 28040 Madrid, Spain
- Department
of Biochemistry and Molecular Biology, Complutense
University, 28040 Madrid, Spain
| |
Collapse
|
4
|
Wang H, Wang H, Liu K, Qin X. Circ_0000595 knockdown alleviates CoCl2-mediated effects in VSMCs by regulating the miR-582-3p/ADAM10 axis. Vascular 2024; 32:920-931. [PMID: 36905137 DOI: 10.1177/17085381231156974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a serious vascular disease causing the death of elder people. Accumulating studies have reported that circular RNAs (circRNAs) are implicated in the regulation of aortic aneurysms. However, the role of circ_0000595 in the progression of TAA is still unclear. METHODS Quantitative real-time PCR (qRT-PCR) and western blotting were implemented to assess circ_0000595, microRNA (miR)-582-3p, guanine nucleotide-binding protein alpha subunit (ADAM10), PCNA, Bax, and Bcl-2 expression. The proliferation of vascular smooth muscle cells was determined using cell counting kit 8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU). Cell apoptosis was measured using flow cytometry, and caspase-3 activity was analyzed using a commercial kit. After bioinformatics analysis, the interaction between miR-582-3p and circ_0000595 or ADAM10 was validated using a dual-luciferase reporter and RNA immunoprecipitation. RESULTS As compared with controls, TAA tissues and CoCl2-induced VSMCs displayed high expression of circ_0000595 and ADAM10, and low expression of miR-582-3p. CoCl2 treatment evidently suppressed VSMC proliferation and promoted VSMCs apoptosis, and these impacts were reverted by circ_0000595 knockdown. Circ_0000595 acted as a molecular sponge for miR-582-3p, and circ_0000595 silencing-mediated influences in CoCl2-induced VSMCs were overturned by miR-582-3p inhibitor. ADAM10 was confirmed as a target gene of miR-582-3p, and miR-582-3p overexpression-induced influence was almost restored by overexpressed ADAM10 in CoCl2-induced VSMCs. Besides, circ_0000595 contributed to ADAM10 protein expression by sponging miR-582-3p. CONCLUSION Our data verified that circ_0000595 silencing might attenuate CoCl2-mediated impacts in VSMCs by regulating the miR-582-3p/ADAM10 axis, providing new potential roads for treating TAA.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Humans
- ADAM10 Protein/metabolism
- ADAM10 Protein/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Amyloid Precursor Protein Secretases/metabolism
- Amyloid Precursor Protein Secretases/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Signal Transduction
- Cells, Cultured
- Cobalt/pharmacology
- Gene Expression Regulation
- Male
Collapse
Affiliation(s)
- Huixiong Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, China
| | - Kai Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, China
| |
Collapse
|
5
|
Mills AC, Sandhu HK, Ikeno Y, Tanaka A. Heritable thoracic aortic disease: a literature review on genetic aortopathies and current surgical management. Gen Thorac Cardiovasc Surg 2024; 72:293-304. [PMID: 38480670 DOI: 10.1007/s11748-024-02017-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/09/2024] [Indexed: 04/16/2024]
Abstract
Heritable thoracic aortic disease puts patients at risk for aortic aneurysms, rupture, and dissections. The diagnosis and management of this heterogenous patient population continues to evolve. Last year, the American Heart Association/American College of Cardiology Joint Committee published diagnosis and management guidelines for aortic disease, which included those with genetic aortopathies. Additionally, evolving research studying the implications of underlying genetic aberrations with new genetic testing continues to become available. In this review, we evaluate the current literature surrounding the diagnosis and management of heritable thoracic aortic disease, as well as novel therapeutic approaches and future directions of research.
Collapse
Affiliation(s)
- Alexander C Mills
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Harleen K Sandhu
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Yuki Ikeno
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Akiko Tanaka
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Halbert S, Kucera J, Antevil J, Nagy C, Sarin S, Trachiotis G. Endovascular Repair of Zone 0 Ascending Aortic Aneurysm: A Review of Current Knowledge and Developing Technology. AORTA (STAMFORD, CONN.) 2024; 12:13-19. [PMID: 39547714 PMCID: PMC11606667 DOI: 10.1055/s-0044-1791670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/05/2024] [Indexed: 11/17/2024]
Abstract
Aortic aneurysms represent the 15th leading cause of death in men and women over 55 years of age. Where historically these lesions were all addressed via an open approach, endovascular aortic repair has entirely altered the way that surgeons approach aortic lesions. Although it was initially employed for patients who were poor surgical candidates, endovascular repair is now standard for abdominal aortic aneurysms and aneurysms in the descending thoracic aorta. Open surgery remains the gold standard for management of ascending aneurysms, in part due to the limitations portended by the anatomy of the ascending aorta, although increasing evidence suggests that endovascular approaches are feasible and may sometimes be optimal for patient outcomes. Here, we present some of the anatomical and technical challenges of the endovascular approach to these "Zone 0" aneurysms, the associated complications, and the current state of device development.
Collapse
Affiliation(s)
- Sarah Halbert
- Division of Cardiothoracic Surgery, Heart Center, Veterans Affairs Medical Center, Washington, District of Columbia
- Department of Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia
| | - John Kucera
- Department of Surgery, Walter Reed National Military Medical Center Medical Center, Bethesda, Maryland
| | - Jared Antevil
- Division of Cardiothoracic Surgery, Heart Center, Veterans Affairs Medical Center, Washington, District of Columbia
- Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Christian Nagy
- Division of Cardiothoracic Surgery, Heart Center, Veterans Affairs Medical Center, Washington, District of Columbia
- Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Shawn Sarin
- Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Gregory Trachiotis
- Division of Cardiothoracic Surgery, Heart Center, Veterans Affairs Medical Center, Washington, District of Columbia
- Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
7
|
Kemberi M, Salmasi Y, Santamaria S. The Role of ADAMTS Proteoglycanases in Thoracic Aortic Disease. Int J Mol Sci 2023; 24:12135. [PMID: 37569511 PMCID: PMC10419162 DOI: 10.3390/ijms241512135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) are complex disease states with high morbidity and mortality that pose significant challenges to early diagnosis. Patients with an aneurysm are asymptomatic and typically present to the emergency department only after the development of a dissection. The extracellular matrix (ECM) plays a crucial role in regulating the aortic structure and function. The histopathologic hallmark termed medial degeneration is characterised by smooth muscle cell (SMC) loss, the degradation of elastic and collagen fibres and proteoglycan (PG) accumulation. Covalently attached to the protein core of PGs are a number of glycosaminoglycan chains, negatively charged molecules that provide flexibility, compressibility, and viscoelasticity to the aorta. PG pooling in the media can produce discontinuities in the aortic wall leading to increased local stress. The accumulation of PGs is likely due to an imbalance between their synthesis by SMCs and decreased proteolysis by A Disintegrin-like and Metalloproteinase with Thrombospondin motifs (ADAMTS) proteoglycanases in the ECM. Mouse models of TAAD indicated that these proteases exert a crucial, albeit complex and not fully elucidated, role in this disease. This has led to a mounting interest in utilising ADAMTS proteoglycanases as biomarkers of TAAD. In this review, we discuss the role of ADAMTSs in thoracic aortic disease and their potential use in facilitating the clinical diagnosis of TAAD and disease progression.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK;
| | - Yousuf Salmasi
- Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK;
| | - Salvatore Santamaria
- Department of Biochemical and Physiological Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
8
|
Moore P, Wolf A, Sathyamoorthy M. The Association of Novel Single-Nucleotide Variants in the Collagen Matrix-Encoding Gene PRDM5 with Aortic Aneurysmal Disease. Life (Basel) 2023; 13:1649. [PMID: 37629506 PMCID: PMC10455947 DOI: 10.3390/life13081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Thoracic aortic aneurysms are clinical conditions that are associated with severe clinical endpoints including dissection and rupture, potentially leading to sudden death. Contrary to their abdominal counterparts, thoracic aortic aneurysms are well-recognized to have a genetic basis underlying their development. Among all patients with aneurysmal disease who underwent clinical genetic screening in our program (N = 145), two patients were found to have variants of uncertain significance (VUS) in the PRDM5 gene. This gene is responsible for multiple regulatory functions in extracellular matrix development, and this is the first report, to our knowledge, to associate this gene with aortopathy.
Collapse
Affiliation(s)
- Peyton Moore
- Sathyamoorthy Laboratory, Department of Medicine, Anne Burnett Marion School of Medicine at TCU, Fort Worth, TX 76123, USA; (P.M.); (A.W.)
| | - Adam Wolf
- Sathyamoorthy Laboratory, Department of Medicine, Anne Burnett Marion School of Medicine at TCU, Fort Worth, TX 76123, USA; (P.M.); (A.W.)
| | - Mohanakrishnan Sathyamoorthy
- Sathyamoorthy Laboratory, Department of Medicine, Anne Burnett Marion School of Medicine at TCU, Fort Worth, TX 76123, USA; (P.M.); (A.W.)
- Consultants in Cardiovascular Medicine and Science—Fort Worth (CCMS-FW), 1121 5th Avenue, Suite 100, Fort Worth, TX 76104, USA
| |
Collapse
|
9
|
Deng J, Li D, Zhang X, Lu W, Rong D, Wang X, Sun G, Jia S, Zhang H, Jia X, Guo W. Murine model of elastase-induced proximal thoracic aortic aneurysm through a midline incision in the anterior neck. Front Cardiovasc Med 2023; 10:953514. [PMID: 36815017 PMCID: PMC9939838 DOI: 10.3389/fcvm.2023.953514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023] Open
Abstract
Objective This study was performed to develop a murine model of elastase-induced proximal thoracic aortic aneurysms (PTAAs). Methods The ascending thoracic aorta and aortic arch of adult C57BL/6J male mice were exposed through a midline incision in the anterior neck, followed by peri-adventitial elastase or saline application. The maximal ascending thoracic aorta diameter was measured with high-resolution micro-ultrasound. Twenty-eight days after the operation, the aortas were harvested and analyzed by histopathological examination and qualitative polymerase chain reaction to determine the basic characteristics of the aneurysmal lesions. Results Fourteen days after the operation, the dilation rate (mean ± standard error) in the 10-min elastase application group (n = 10, 71.44 ± 10.45%) or 5-min application group (n = 9, 42.67 ± 3.72%) were significantly higher than that in the saline application group (n = 9, 7.37 ± 0.94%, P < 0.001 for both). Histopathological examination revealed aortic wall thickening, degradation of elastin fibers, loss of smooth muscle cells, more vasa vasorum, enhanced extracellular matrix degradation, augmented collagen synthesis, upregulated apoptosis and proliferation capacity of smooth muscle cells, and increased macrophages and CD4+ T cells infiltration in the PTAA lesions. Qualitative analyses indicated higher expression of the proinflammatory markers, matrix metalloproteinase-2 and -9 as well as Collagen III, Collagen I in the PTAAs than in the controls. Conclusion We established a novel in vivo mouse model of PTAAs through a midline incision in the anterior neck by peri-adventitial application of elastase. This model may facilitate research into the pathogenesis of PTAA formation and the treatment strategy for this devastating disease.
Collapse
Affiliation(s)
- Jianqing Deng
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Department of Cardiovascular Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuelin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihang Lu
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Dan Rong
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xinhao Wang
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Guoyi Sun
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Senhao Jia
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Hongpeng Zhang
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Xin Jia
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery, The First Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Wei Guo,
| |
Collapse
|
10
|
Li Z, Cong X, Kong W. Matricellular proteins: Potential biomarkers and mechanistic factors in aortic aneurysms. J Mol Cell Cardiol 2022; 169:41-56. [DOI: 10.1016/j.yjmcc.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
11
|
Tracking an Elusive Killer: State of the Art of Molecular-Genetic Knowledge and Laboratory Role in Diagnosis and Risk Stratification of Thoracic Aortic Aneurysm and Dissection. Diagnostics (Basel) 2022; 12:diagnostics12081785. [PMID: 35892496 PMCID: PMC9329974 DOI: 10.3390/diagnostics12081785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
The main challenge in diagnosing and managing thoracic aortic aneurysm and dissection (TAA/D) is represented by the early detection of a disease that is both deadly and “elusive”, as it generally grows asymptomatically prior to rupture, leading to death in the majority of cases. Gender differences exist in aortic dissection in terms of incidence and treatment options. Efforts have been made to identify biomarkers that may help in early diagnosis and in detecting those patients at a higher risk of developing life-threatening complications. As soon as the hereditability of the TAA/D was demonstrated, several genetic factors were found to be associated with both the syndromic and non-syndromic forms of the disease, and they currently play a role in patient diagnosis/prognosis and management-guidance purposes. Likewise, circulating biomarker could represent a valuable resource in assisting the diagnosis, and several studies have attempted to identify specific molecules that may help with risk stratification outside the emergency department. Even if promising, those data lack specificity/sensitivity, and, in most cases, they need more testing before entering the “clinical arena”. This review summarizes the state of the art of the laboratory in TAA/D diagnostics, with particular reference to the current and future role of molecular-genetic testing.
Collapse
|
12
|
Martin-Ventura JL, Roncal C, Orbe J, Blanco-Colio LM. Role of Extracellular Vesicles as Potential Diagnostic and/or Therapeutic Biomarkers in Chronic Cardiovascular Diseases. Front Cell Dev Biol 2022; 10:813885. [PMID: 35155428 PMCID: PMC8827403 DOI: 10.3389/fcell.2022.813885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the first cause of death worldwide. In recent years, there has been great interest in the analysis of extracellular vesicles (EVs), including exosomes and microparticles, as potential mediators of biological communication between circulating cells/plasma and cells of the vasculature. Besides their activity as biological effectors, EVs have been also investigated as circulating/systemic biomarkers in different acute and chronic CVDs. In this review, the role of EVs as potential diagnostic and prognostic biomarkers in chronic cardiovascular diseases, including atherosclerosis (mainly, peripheral arterial disease, PAD), aortic stenosis (AS) and aortic aneurysms (AAs), will be described. Mechanistically, we will analyze the implication of EVs in pathological processes associated to cardiovascular remodeling, with special emphasis in their role in vascular and valvular calcification. Specifically, we will focus on the participation of EVs in calcium accumulation in the pathological vascular wall and aortic valves, involving the phenotypic change of vascular smooth muscle cells (SMCs) or valvular interstitial cells (IC) to osteoblast-like cells. The knowledge of the implication of EVs in the pathogenic mechanisms of cardiovascular remodeling is still to be completely deciphered but there are promising results supporting their potential translational application to the diagnosis and therapy of different CVDs.
Collapse
Affiliation(s)
- Jose Luis Martin-Ventura
- Vascular Research Laboratory, IIS-Fundación Jiménez-Díaz, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- *Correspondence: Jose Luis Martin-Ventura, ; Carmen Roncal,
| | - Carmen Roncal
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- *Correspondence: Jose Luis Martin-Ventura, ; Carmen Roncal,
| | - Josune Orbe
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - Luis Miguel Blanco-Colio
- Vascular Research Laboratory, IIS-Fundación Jiménez-Díaz, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|