1
|
Magielski J, Ruggiero SM, Xian J, Parthasarathy S, Galer P, Ganesan S, Back A, McKee J, McSalley I, Gonzalez AK, Morgan A, Donaher J, Helbig I. The clinical and genetic spectrum of paediatric speech and language disorders in 52,143 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.23.24306192. [PMID: 38712155 PMCID: PMC11071575 DOI: 10.1101/2024.04.23.24306192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52,143 individuals, reconstructing clinical histories using a large-scale data mining approach of the Electronic Medical Records (EMR) from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of twenty-six broad speech and language diagnoses. We used Natural Language Processing to assess to which degree clinical diagnosis in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be easily retrieved through ICD-10 diagnosis codes, while stuttering as a speech phenotype was only coded in 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and to a lesser degree with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our EMR analysis were STXBP1 (n=21), PTEN (n=20), and CACNA1A (n=18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P=8.57 × 10-7, CI=18.62-130.39) and MYO7A with speech and language development delay due to hearing loss (P=1.24 × 10-5, CI=17.46-Inf). Finally, in a sub-cohort of 726 individuals with whole exome sequencing data, we identified an enrichment of rare variants in synaptic protein and neuronal receptor pathways and associations of UQCRC1 with expressive aphasia and WASHC4 with abnormality of speech or vocalization. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.
Collapse
Affiliation(s)
- Jan Magielski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Sarah M. Ruggiero
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Peter Galer
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shiva Ganesan
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Amanda Back
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jillian McKee
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ian McSalley
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Alexander K. Gonzalez
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Angela Morgan
- Murdoch Children’s Research Institute, Parkville 3052, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville 3052, Australia
| | - Joseph Donaher
- Center for Childhood Communication, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Kawan M, Körner M, Schlosser A, Buchberger A. p97/VCP Promotes the Recycling of Endocytic Cargo. Mol Biol Cell 2023; 34:ar126. [PMID: 37756124 PMCID: PMC10848945 DOI: 10.1091/mbc.e23-06-0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The endocytic pathway is of central importance for eukaryotic cells, as it enables uptake of extracellular materials, membrane protein quality control and recycling, as well as modulation of receptor signaling. While the ATPase p97 (VCP, Cdc48) has been found to be involved in the fusion of early endosomes and endolysosomal degradation, its role in endocytic trafficking is still incompletely characterized. Here, we identify myoferlin (MYOF), a ferlin family member with functions in membrane trafficking and repair, as a hitherto unknown p97 interactor. The interaction of MYOF with p97 depends on the cofactor PLAA previously linked to endosomal sorting. Besides PLAA, shared interactors of p97 and MYOF comprise several proteins involved in endosomal recycling pathways, including Rab11, Rab14, and the transferrin receptor CD71. Accordingly, a fraction of p97 and PLAA localizes to MYOF-, Rab11-, and Rab14-positive endosomal compartments. Pharmacological inhibition of p97 delays transferrin recycling, indicating that p97 promotes not only the lysosomal degradation, but also the recycling of endocytic cargo.
Collapse
Affiliation(s)
- Mona Kawan
- Chair of Biochemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Maria Körner
- Chair of Biochemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Alexander Buchberger
- Chair of Biochemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Rodgers J, Richmond CM, McGaughran J. Delineating the CCDC22-related Ritscher-Schinzel syndrome phenotype in the original family. Am J Med Genet A 2022; 188:3324-3330. [PMID: 36073196 DOI: 10.1002/ajmg.a.62963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023]
Abstract
Pathogenic variants in CCDC22 were initially described in 2012 in a large Australian family with intellectual disability and were subsequently noted to cause a phenotype consistent with the previously described Ritscher-Schinzel syndrome (RSS). The phenotypes of the original family were not described in detail and remains limited phenotypic data reported in medical literature. We detail the phenotypes of the original family, including newly diagnosed family members. With these eight phenotypic descriptions, more than triple the number of individuals for whom detailed clinical information is available. In addition to typical facies, common phenotypic features included intellectual disability, congenital heart disease and posterior fossa malformations, postnatal short stature, ectodermal abnormalities, and digital anomalies as previously described. Spinal curvature and genital anomalies were seen in most patients, while gastrointestinal features and disturbed sleep were also recurrently seen. We propose a possible mechanism linking the familial variant to a diagnosis of sarcoidosis in one individual. Given the clinical and genetic heterogeneity of RSS, we suggest a dyadic naming convention.
Collapse
Affiliation(s)
- Jonathan Rodgers
- Genetic Health Queensland, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher M Richmond
- Genetic Health Queensland, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Guettsches AK, Meyer N, Zahedi RP, Evangelista T, Muentefering T, Ruck T, Lacene E, Heute C, Gonczarowska-Jorge H, Schoser B, Krause S, Hentschel A, Vorgerd M, Roos A. FYCO1 Increase and Effect of Arimoclomol-Treatment in Human VCP-Pathology. Biomedicines 2022; 10:biomedicines10102443. [PMID: 36289705 PMCID: PMC9598455 DOI: 10.3390/biomedicines10102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Dominant VCP–mutations cause a variety of neurological manifestations including inclusion body myopathy with early–onset Paget disease and frontotemporal dementia 1 (IBMPFD). VCP encodes a ubiquitously expressed multifunctional protein that is a member of the AAA+ protein family, implicated in multiple cellular functions ranging from organelle biogenesis to ubiquitin–dependent protein degradation. The latter function accords with the presence of protein aggregates in muscle biopsy specimens derived from VCP–patients. Studying the proteomic signature of VCP–mutant fibroblasts, we identified a (pathophysiological) increase of FYCO1, a protein involved in autophagosome transport. We confirmed this finding applying immunostaining also in muscle biopsies derived from VCP–patients. Treatment of fibroblasts with arimoclomol, an orphan drug thought to restore physiologic cellular protein repair pathways, ameliorated cellular cytotoxicity in VCP–patient derived cells. This finding was accompanied by increased abundance of proteins involved in immune response with a direct impact on protein clearaqnce as well as by elevation of pro–survival proteins as unravelled by untargeted proteomic profiling. Hence, the combined results of our study reveal a dysregulation of FYCO1 in the context of VCP–etiopathology, highlight arimoclomol as a potential drug and introduce proteins targeted by the pre–clinical testing of this drug in fibroblasts.
Collapse
Affiliation(s)
- Anne-Katrin Guettsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Correspondence: (A.-K.G.); (A.R.); Tel.: +49-234-3020 (A.-K.G.); +49-201-723-6570 (A.R.)
| | - Nancy Meyer
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg–Essen, 45147 Essen, Germany
| | - René P. Zahedi
- Manitoba Centre for Proteomics and Systems Biology, 715 McDermot Aveue, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Leibniz–Institut für Analytische Wissenschaften—ISAS—e.V, 44227 Dortmund, Germany
| | - Teresinha Evangelista
- Nord/Est/Ile–de–France Neuromuscular Reference Center, Unité de Morphologie Neuromusculaire, Institute of Myology, Pitié–Salpêtrière Hospital, APHP, Sorbonne University, 75013 Paris, France
| | - Thomas Muentefering
- Department of Neurology, Medical Faculty, Heinrich–Heine–University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich–Heine–University Düsseldorf, 40225 Düsseldorf, Germany
| | - Emmanuelle Lacene
- Nord/Est/Ile–de–France Neuromuscular Reference Center, Unité de Morphologie Neuromusculaire, Institute of Myology, Pitié–Salpêtrière Hospital, APHP, Sorbonne University, 75013 Paris, France
| | - Christoph Heute
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg–Essen, 45147 Essen, Germany
| | | | - Benedikt Schoser
- Department of Neurology, Friedrich–Baur–Institute, Ludwig–Maximilians–University Munich, Ziemssenstr. 1a, 80336 Munich, Germany
| | - Sabine Krause
- Department of Neurology, Friedrich–Baur–Institute, Ludwig–Maximilians–University Munich, Ziemssenstr. 1a, 80336 Munich, Germany
| | - Andreas Hentschel
- Leibniz–Institut für Analytische Wissenschaften—ISAS—e.V, 44227 Dortmund, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Department of Neuropediatrics and Neuromuscular Centre for Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences, University Duisburg–Essen, 45147 Essen, Germany
- Children’s Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON K1H 5B2, Canada
- Correspondence: (A.-K.G.); (A.R.); Tel.: +49-234-3020 (A.-K.G.); +49-201-723-6570 (A.R.)
| |
Collapse
|
5
|
Moaeen-Ud-Din M, Danish Muner R, Khan MS. Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Sci Rep 2022; 12:9891. [PMID: 35701479 PMCID: PMC9197946 DOI: 10.1038/s41598-022-14018-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Pakistan is third largest country in term of goat population with distinct characteristics of breeds and estimated population of 78.2 million. Punjab province has 37% of country's total population with seven important documented goat breeds namely Beetal, Daira Din Pannah, Nachi, Barbari, Teddi, Pahari and Pothwari. There is paucity of literature on GWAS for economically important traits i.e., body weight and morphometric measurements. Therefore, we performed GWAS using 50 K SNP Chip for growth in term of age adjusted body weight and morphometric measurements in order to identify genomic regions influencing these traits among Punjab goat breeds. Blood samples were collected from 879 unrelated animals of seven goat breeds along with data for body weight and morphometric measurements including body length, body height, pubic bone length, heart girth and chest length. Genomic DNA was extracted and genotyped using 50 K SNP bead chip. Association of genotypic data with the phenotypic data was performed using Plink 1.9 software. Linear mixed model was used for the association study. Genes were annotated from Capra hircus genome using assembly ARS1. We have identified a number of highly significant SNPs and respective candidate genes associated with growth and body conformation traits. The functional aspects of these candidate genes suggested their potential role in body growth. Moreover, pleiotropic effects were observed for some SNPs for body weight and conformation traits. The results of current study contributed to a better understanding of genes influencing growth and body conformation traits in goat.
Collapse
Affiliation(s)
- Muhammad Moaeen-Ud-Din
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan.
| | - Raja Danish Muner
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad Sajjad Khan
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| |
Collapse
|