1
|
Stone TJ, Merve A, Valerio F, Yasin SA, Jacques TS. Paediatric low-grade glioma: the role of classical pathology in integrated diagnostic practice. Childs Nerv Syst 2024; 40:3189-3207. [PMID: 39294363 PMCID: PMC11511714 DOI: 10.1007/s00381-024-06591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024]
Abstract
Low-grade gliomas are a cause of severe and often life-long disability in children. Pathology plays a key role in their management by establishing the diagnosis, excluding malignant alternatives, predicting outcomes and identifying targetable genetic alterations. Molecular diagnosis has reshaped the terrain of pathology, raising the question of what part traditional histology plays. In this review, we consider the classification and pathological diagnosis of low-grade gliomas and glioneuronal tumours in children by traditional histopathology enhanced by the opportunities afforded by access to comprehensive genetic and epigenetic characterisation.
Collapse
Affiliation(s)
- Thomas J Stone
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital, London, UK
| | - Ashirwad Merve
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Fernanda Valerio
- Department of Histopathology, Great Ormond Street Hospital, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Shireena A Yasin
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital, London, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK.
- Department of Histopathology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
2
|
Shatara M, Schieffer KM, Melas M, Varga EA, Thomas D, Bucknor BA, Costello HM, Wheeler G, Kelly BJ, Miller KE, Rodriguez DP, Mathew MT, Lee K, Crotty E, Leary S, Paulson VA, Cole B, Abdelbaki MS, Finlay JL, Lazow MA, Salloum R, Fouladi M, Boué DR, Mardis ER, Cottrell CE. Molecular characterization of gliomas and glioneuronal tumors amid Noonan syndrome: cancer predisposition examined. Front Oncol 2024; 14:1453309. [PMID: 39309743 PMCID: PMC11412961 DOI: 10.3389/fonc.2024.1453309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction In the setting of pediatric and adolescent young adult cancer, increased access to genomic profiling has enhanced the detection of genetic variation associated with cancer predisposition, including germline syndromic conditions. Noonan syndrome (NS) is associated with the germline RAS pathway activating alterations and increased risk of cancer. Herein, we describe our comprehensive molecular profiling approach, the association of NS with glioma and glioneuronal tumors, and the clinical and histopathologic characteristics associated with the disease. Methods Within an institutional pediatric cancer cohort (n = 314), molecular profiling comprised of paired somatic disease-germline comparator exome analysis, RNA sequencing, and tumor classification by DNA methylation analysis was performed. Results Through the implementation of paired analysis, this study identified 4 of 314 (1.3%) individuals who harbored a germline PTPN11 variant associated with NS, of which 3 individuals were diagnosed with a glioma or glioneuronal tumor. Furthermore, we extend this study through collaboration with a peer institution to identify two additional individuals with NS and a glioma or glioneuronal tumor. Notably, in three of five (60%) individuals, paired genomic profiling led to a previously unrecognized diagnosis of Noonan syndrome despite an average age of cancer diagnosis of 16.8 years. The study of the disease-involved tissue identified signaling pathway dysregulation through somatic alteration of genes involved in cellular proliferation, survival, and differentiation. Discussion Comparative pathologic findings are presented to enable an in-depth examination of disease characteristics. This comprehensive analysis highlights the association of gliomas and glioneuronal tumors with RASopathies and the potential therapeutic challenges and importantly demonstrates the utility of genomic profiling for the identification of germline cancer predisposition.
Collapse
Affiliation(s)
- Margaret Shatara
- The Division of Hematology and Oncology, St. Louis Children’s Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Elizabeth A. Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Diana Thomas
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Brianna A. Bucknor
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Heather M. Costello
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Benjamin J. Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Diana P. Rodriguez
- The Department of Radiology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mariam T. Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Erin Crotty
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Sarah Leary
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Vera A. Paulson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Mohamed S. Abdelbaki
- The Division of Hematology and Oncology, St. Louis Children’s Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Jonathan L. Finlay
- The Division of Hematology/Oncology, and Bone Marrow Transplantation, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, United States
| | - Margot A. Lazow
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- The Division of Hematology/Oncology, and Bone Marrow Transplantation, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, United States
| | - Ralph Salloum
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- The Division of Hematology/Oncology, and Bone Marrow Transplantation, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, United States
| | - Maryam Fouladi
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- The Division of Hematology/Oncology, and Bone Marrow Transplantation, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, United States
| | - Daniel R. Boué
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Stagi S, Ferrari V, Ferrari M, Priolo M, Tartaglia M. Inside the Noonan "universe": Literature review on growth, GH/IGF axis and rhGH treatment: Facts and concerns. Front Endocrinol (Lausanne) 2022; 13:951331. [PMID: 36060964 PMCID: PMC9434367 DOI: 10.3389/fendo.2022.951331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
Noonan syndrome (NS) is a disorder characterized by a typical facial gestalt, congenital heart defects, variable cognitive deficits, skeletal defects, and short stature. NS is caused by germline pathogenic variants in genes coding proteins with a role in the RAS/mitogen-activated protein kinase signaling pathway, and it is typically associated with substantial genetic and clinical complexity and variability. Short stature is a cardinal feature in NS, with evidence indicating that growth hormone (GH) deficiency, partial GH insensitivity, and altered response to insulin-like growth factor I (IGF-1) are contributing events for growth failure in these patients. Decreased IGF-I, together with low/normal responses to GH pharmacological provocation tests, indicating a variable presence of GH deficiency/resistance, in particular in subjects with pathogenic PTPN11 variants, are frequently reported. Nonetheless, short- and long-term studies have demonstrated a consistent and significant increase in height velocity (HV) in NS children and adolescents treated with recombinant human GH (rhGH). While the overall experience with rhGH treatment in NS patients with short stature is reassuring, it is difficult to systematically compare published data due to heterogeneous protocols, potential enrolment bias, the small size of cohorts in many studies, different cohort selection criteria and varying durations of therapy. Furthermore, in most studies, the genetic information is lacking. NS is associated with a higher risk of benign and malignant proliferative disorders and hypertrophic cardiomyopathy, and rhGH treatment may further increase risk in these patients, especially as dosages vary widely. Herein we provide an updated review of aspects related to growth, altered function of the GH/IGF axis and cell response to GH/IGF stimulation, rhGH treatment and its possible adverse events. Given the clinical variability and genetic heterogeneity of NS, treatment with rhGH should be personalized and a conservative approach with judicious surveillance is recommended. Depending on the genotype, an individualized follow-up and close monitoring during rhGH treatments, also focusing on screening for neoplasms, should be considered.
Collapse
Affiliation(s)
- Stefano Stagi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Vittorio Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Marta Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Manuela Priolo
- Medical Genetics Unit, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, Reggio Calabria, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Clinical report of a brain magnetic resonance imaging finding in Noonan syndrome. Childs Nerv Syst 2021; 37:3963-3966. [PMID: 33811550 DOI: 10.1007/s00381-021-05149-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Noonan syndrome (NS) is an autosomal dominant disease caused by aberrant up-regulated signaling through RAS GTPase. It is characterized by facial dysmorphisms, short stature, congenital heart defects, malformations of rib cage bones, bleeding problems, learning difficulties, or mild intellectual disability. Additional intracranial findings in NS patients include tumors, midline anomalies, and malformations of cortical development. In this report, we present the case of a young female patient, with a known diagnosis of Noonan syndrome that in complete well being developed two brain lesions, in the right nucleus pallidus and in the left cerebellar hemisphere respectively, whose location and signal on MRI looked similar to neurofibromatosis type 1 unidentified bright objects (UBOs), and whose spectroscopic characteristics excluded neoplasms.
Collapse
|
5
|
Lodi M, Boccuto L, Carai A, Cacchione A, Miele E, Colafati GS, Diomedi Camassei F, De Palma L, De Benedictis A, Ferretti E, Catanzaro G, Pò A, De Luca A, Rinelli M, Lepri FR, Agolini E, Tartaglia M, Locatelli F, Mastronuzzi A. Low-Grade Gliomas in Patients with Noonan Syndrome: Case-Based Review of the Literature. Diagnostics (Basel) 2020; 10:diagnostics10080582. [PMID: 32806529 PMCID: PMC7460327 DOI: 10.3390/diagnostics10080582] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Noonan syndrome (NS) is a congenital autosomic dominant condition characterized by a variable spectrum from a clinical and genetical point of view. Germline mutations in more than ten genes involved in RAS-MAPK signal pathway have been demonstrated to cause the disease. An higher risk for leukemia and solid malignancies, including brain tumors, is related to NS. A review of the published literature concerning low grade gliomas (LGGs) in NS is presented. We described also a 13-year-old girl with NS associated with a recurrent mutation in PTPN11, who developed three different types of brain tumors, i.e., an optic pathway glioma, a glioneuronal neoplasm of the left temporal lobe and a cerebellar pilocytic astrocytoma. Molecular characterization of the glioneuronal tumor allowed to detect high levels of phosphorylated MTOR (pMTOR); therefore, a therapeutic approach based on an mTOR inhibitor (everolimus) was elected. The treatment was well tolerated and proved to be effective, leading to a stabilization of the tumor, which was surgical removed. The positive outcome of the present case suggests considering this approach for patients with RASopathies and brain tumors with hyperactivated MTOR signaling.
Collapse
Affiliation(s)
- Mariachiara Lodi
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.); (A.C.); (E.M.); (F.L.)
| | - Luigi Boccuto
- School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
- JC Self Research Institute of the Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (A.D.B.)
| | - Antonella Cacchione
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.); (A.C.); (E.M.); (F.L.)
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.); (A.C.); (E.M.); (F.L.)
| | | | | | - Luca De Palma
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.D.P.); (E.F.)
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.C.); (A.D.B.)
| | - Elisabetta Ferretti
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.D.P.); (E.F.)
| | | | - Agnese Pò
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy;
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71043 San Giovanni Rotondo, Italy;
| | - Martina Rinelli
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (F.R.L.); (E.A.)
| | - Francesca Romana Lepri
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (F.R.L.); (E.A.)
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (F.R.L.); (E.A.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.); (A.C.); (E.M.); (F.L.)
- Department of Pediatric Hematology and Oncology Cell and Gene Therapy, Bambino Gesù Hospital, IRCCS, University La Sapienza, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.); (A.C.); (E.M.); (F.L.)
- Correspondence: ; Tel.: +39-0668594664; Fax: +39-0668592292
| |
Collapse
|
6
|
Muskens IS, Zhang C, de Smith AJ, Biegel JA, Walsh KM, Wiemels JL. Germline genetic landscape of pediatric central nervous system tumors. Neuro Oncol 2020; 21:1376-1388. [PMID: 31247102 PMCID: PMC6827836 DOI: 10.1093/neuonc/noz108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer among children. Depending on histopathology, anatomic location, and genomic factors, specific subgroups of brain tumors have some of the highest cancer-related mortality rates or result in considerable lifelong morbidity. Pediatric CNS tumors often occur in patients with genetic predisposition, at times revealing underlying cancer predisposition syndromes. Advances in next-generation sequencing (NGS) have resulted in the identification of an increasing number of cancer predisposition genes. In this review, the literature on genetic predisposition to pediatric CNS tumors is evaluated with a discussion of potential future targets for NGS and clinical implications. Furthermore, we explore potential strategies for enhancing the understanding of genetic predisposition of pediatric CNS tumors, including evaluation of non-European populations, pan-genomic approaches, and large collaborative studies.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam J de Smith
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
7
|
Jones DT, Bandopadhayay P, Jabado N. The Power of Human Cancer Genetics as Revealed by Low-Grade Gliomas. Annu Rev Genet 2019; 53:483-503. [DOI: 10.1146/annurev-genet-120417-031642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human brain contains a vast number of cells and shows extraordinary cellular diversity to facilitate the many cognitive and automatic commands governing our bodily functions. This complexity arises partly from large-scale structural variations in the genome, evolutionary processes to increase brain size, function, and cognition. Not surprisingly given recent technical advances, low-grade gliomas (LGGs), which arise from the glia (the most abundant cell type in the brain), have undergone a recent revolution in their classification and therapy, especially in the pediatric setting. Next-generation sequencing has uncovered previously unappreciated diverse LGG entities, unraveling genetic subgroups and multiple molecular alterations and altered pathways, including many amenable to therapeutic targeting. In this article we review these novel entities, in which oncogenic processes show striking age-related neuroanatomical specificity (highlighting their close interplay with development); the opportunities they provide for targeted therapies, some of which are already practiced at the bedside; and the challenges of implementing molecular pathology in the clinic.
Collapse
Affiliation(s)
- David T.W. Jones
- Pediatric Glioma Research Group, Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts 02215, USA
- The Broad Institute of MIT and Harvard, Boston, Massachusetts 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nada Jabado
- Departments of Pediatric and Human Genetics, McGill University and the Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
8
|
Fujita A, Higashijima T, Shirozu H, Masuda H, Sonoda M, Tohyama J, Kato M, Nakashima M, Tsurusaki Y, Mitsuhashi S, Mizuguchi T, Takata A, Miyatake S, Miyake N, Fukuda M, Kameyama S, Saitsu H, Matsumoto N. Pathogenic variants of DYNC2H1, KIAA0556, and PTPN11 associated with hypothalamic hamartoma. Neurology 2019; 93:e237-e251. [PMID: 31197031 DOI: 10.1212/wnl.0000000000007774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Intensive genetic analysis was performed to reveal comprehensive molecular insights into hypothalamic hamartoma (HH). METHODS Thirty-eight individuals with HH were investigated by whole exome sequencing, target capture-based deep sequencing, or single nucleotide polymorphism (SNP) array using DNA extracted from blood leukocytes or HH samples. RESULTS We identified a germline variant of KIAA0556, which encodes a ciliary protein, and 2 somatic variants of PTPN11, which forms part of the RAS/mitogen-activated protein kinase (MAPK) pathway, as well as variants in known genes associated with HH. An SNP array identified (among 3 patients) one germline copy-neutral loss of heterozygosity (cnLOH) at 6p22.3-p21.31 and 2 somatic cnLOH; one at 11q12.2-q25 that included DYNC2H1, which encodes a ciliary motor protein, and the other at 17p13.3-p11.2. A germline heterozygous variant and an identical somatic variant of DYNC2H1 arising from cnLOH at 11q12.2-q25 were confirmed in one patient (whose HH tissue, therefore, contains biallelic variants of DYNC2H1). Furthermore, a combination of a germline and a somatic DYNC2H1 variant was detected in another patient. CONCLUSIONS Overall, our cohort identified germline/somatic alterations in 34% (13/38) of patients with HH. Disruption of the Shh signaling pathway associated with cilia or the RAS/MAPK pathway may lead to the development of HH.
Collapse
Affiliation(s)
- Atsushi Fujita
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takefumi Higashijima
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroshi Shirozu
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroshi Masuda
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masaki Sonoda
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Jun Tohyama
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mitsuhiro Kato
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mitsuko Nakashima
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Satomi Mitsuhashi
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takeshi Mizuguchi
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Atsushi Takata
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Satoko Miyatake
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Miyake
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masafumi Fukuda
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Shigeki Kameyama
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hirotomo Saitsu
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan
| | - Naomichi Matsumoto
- From the Departments of Human Genetics (A.F., S. Mitsuhashi, T.M., A.T., S. Miyatake, N. Miyake, N. Matsumoto) and Neurosurgery (M.S.), Yokohama City University Graduate School of Medicine; Departments of Functional Neurosurgery (T.H., H. Shirozu, H.M., M.F., S.K.) and Child Neurology (J.T.), Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital Niigata, Japan; Department of Pediatrics and Neurology (M.S.), Wayne State University, Children's Hospital of Michigan, Detroit Medical Center; Department of Pediatrics (M.K.), Showa University School of Medicine, Tokyo; Department of Biochemistry (M.N., H. Saitsu), Hamamatsu University School of Medicine; and Clinical Research Institute (Y.T.), Kanagawa Children's Medical Center, Yokohama, Japan.
| |
Collapse
|
9
|
Siegfried A, Cances C, Denuelle M, Loukh N, Tauber M, Cavé H, Delisle MB. Noonan syndrome, PTPN11 mutations, and brain tumors. A clinical report and review of the literature. Am J Med Genet A 2017; 173:1061-1065. [PMID: 28328117 DOI: 10.1002/ajmg.a.38108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/05/2016] [Indexed: 01/02/2023]
Abstract
Noonan syndrome (NS), an autosomal dominant disorder, is characterized by short stature, congenital heart defects, developmental delay, and facial dysmorphism. PTPN11 mutations are the most common cause of NS. PTPN11 encodes a non-receptor protein tyrosine phosphatase, SHP2. Hematopoietic malignancies and solid tumors are associated with NS. Among solid tumors, brain tumors have been described in children and young adults but remain rather rare. We report a 16-year-old boy with PTPN11-related NS who, at the age of 12, was incidentally found to have a left temporal lobe brain tumor and a cystic lesion in the right thalamus. He developed epilepsy 2 years later. The temporal tumor was surgically resected because of increasing crises and worsening radiological signs. Microscopy showed nodules with specific glioneuronal elements or glial nodules, leading to the diagnosis of dysembryoplastic neuroepithelial tumor (DNT). Immunohistochemistry revealed positive nuclear staining with Olig2 and pERK in small cells. SHP2 plays a key role in RAS/MAPK pathway signaling which controls several developmental cell processes and oncogenesis. An amino-acid substitution in the N-terminal SHP2 domain disrupts the self-locking conformation and leads to ERK activation. Glioneuronal tumors including DNTs and pilocytic astrocytomas have been described in NS. This report provides further support for the relation of DNTs with RASopathies and for the implication of RAS/MAPK pathways in sporadic low-grade glial tumors including DNTs. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aurore Siegfried
- Department of Pathology, Institut Universitaire du Cancer, Oncopole, Toulouse, France.,Neuropathology, University Laboratory of Pathology, CHU Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Claude Cances
- Pediatric Neurology, Hôpital des Enfants, CHU Toulouse, Toulouse, France
| | - Marie Denuelle
- Neurophysiological Investigation Department, Hôpital Pierre-Paul Riquet, CHU Toulouse, Toulouse, France
| | - Najat Loukh
- Neuropathology, University Laboratory of Pathology, CHU Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Maïté Tauber
- Endocrinology, Obesity, Bone Disease, Genetics and Medical Gynecology, Hôpital des Enfants, INSERM UMR1043, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Hélène Cavé
- INSERM UMR-S1131, University Institute of Hematology, Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France.,Genetics Department, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France
| | - Marie-Bernadette Delisle
- Neuropathology, University Laboratory of Pathology, CHU Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France.,INSERM UMR 1214 ToNIC, Université Toulouse III-Paul Sabatier, Toulouse, France
| |
Collapse
|
10
|
Sturm D, Pfister SM, Jones DTW. Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. J Clin Oncol 2017. [PMID: 28640698 DOI: 10.1200/jco.2017.73.0242] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gliomas are the most common CNS tumors in children and adolescents, and they show an extremely broad range of clinical behavior. The majority of pediatric gliomas present as benign, slow-growing lesions classified as grade I or II by the WHO classification of CNS tumors. These pediatric low-grade gliomas (LGGs) are fundamentally different from IDH-mutant LGGs occurring in adults, because they rarely undergo malignant transformation and show excellent overall survival under current treatment strategies. However, a significant fraction of gliomas develop over a short period of time and progress rapidly and are therefore classified as WHO grade III or IV high-grade gliomas (HGGs). Despite all therapeutic efforts, they remain largely incurable, with the most aggressive forms being lethal within months. Thus, the intentions of neurosurgeons, pediatric oncologists, and radiotherapists to improve care for pediatric patients with glioma range from increasing quality of life and preventing long-term sequelae in what is often a chronic, but rarely life-threatening disease (LGG), to uncovering effective treatment options to prolong patient survival in an almost universally fatal setting (HGG). The last decade has seen unprecedented progress in understanding the molecular biology underlying pediatric gliomas, fueling hopes to achieve both goals. Large-scale collaborative studies around the globe have cataloged genomic and epigenomic alterations in gliomas across ages, grades, and histologies. These studies have revealed biologic subgroups characterized by distinct molecular, pathologic, and clinical features, with clear relevance for patient management. In this review, we summarize hallmark discoveries that have expanded our knowledge in pediatric LGGs and HGGs, explain their role in tumor biology, and convey our current concepts on how these findings may be translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Dominik Sturm
- Dominik Sturm, Stefan M. Pfister, and David T.W. Jones, German Cancer Research Center; Hopp-Children's Cancer Center at the National Center for Tumor Diseases Heidelberg; German Consortium for Translational Cancer Research; and Dominik Sturm and Stefan M. Pfister, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Dominik Sturm, Stefan M. Pfister, and David T.W. Jones, German Cancer Research Center; Hopp-Children's Cancer Center at the National Center for Tumor Diseases Heidelberg; German Consortium for Translational Cancer Research; and Dominik Sturm and Stefan M. Pfister, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Dominik Sturm, Stefan M. Pfister, and David T.W. Jones, German Cancer Research Center; Hopp-Children's Cancer Center at the National Center for Tumor Diseases Heidelberg; German Consortium for Translational Cancer Research; and Dominik Sturm and Stefan M. Pfister, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
11
|
Krishna KB, Pagan P, Escobar O, Popovic J. Occurrence of Cranial Neoplasms in Pediatric Patients with Noonan Syndrome Receiving Growth Hormone: Is Screening with Brain MRI prior to Initiation of Growth Hormone Indicated? Horm Res Paediatr 2017; 88:423-426. [PMID: 28746941 PMCID: PMC9204260 DOI: 10.1159/000479107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/03/2017] [Indexed: 01/03/2023] Open
Abstract
Noonan syndrome (NS) is associated with short stature. Growth hormone treatment has been FDA approved for use in these patients. Children with NS are at a higher risk of developing benign and malignant proliferative disorders, primary brain tumors being one of them. Since growth hormone therapy can worsen the tumor burden, screening with a brain MRI prior to growth hormone initiation in NS patients is strongly recommended. Here we present two NS patients who developed different primary brain tumors while being on growth hormone therapy.
Collapse
Affiliation(s)
- Kanthi Bangalore Krishna
- Division of Pediatric Endocrinology, Department of Pediatrics, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Pedro Pagan
- Division of Pediatric Endocrinology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Oscar Escobar
- Division of Pediatric Endocrinology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jadranka Popovic
- Division of Pediatric Endocrinology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Rosette forming glioneuronal tumor in association with Noonan syndrome: pathobiological implications. Clin Neuropathol 2016; 30:297-300. [PMID: 22011734 PMCID: PMC3657471 DOI: 10.5414/np300374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Noonan syndrome, a distinctive syndrome characterized by dysmorphism, cardiac abnormalities and developmental delay, has been associated with a number of malignancies, however, only a few cases of primary glial or glioneuronal neoplasms have been reported. We report here the case of an 18-year-old with Noonan syndrome who developed a rosette forming glioneuronal tumor of the posterior fossa. The tumor demonstrated strong pERK immunoreactivity, suggesting MAPK/ERK pathway activation. Molecular testing did not reveal BRAF rearrangements (fusion transcripts) by PCR or a BRAFV600E mutation by sequencing. We review the literature regarding the molecular pathogenesis of Noonan syndrome and primary brain tumors, and consider the intriguing link between their common molecular pathways.
Collapse
|
13
|
Zakrzewski K, Jarząb M, Pfeifer A, Oczko-Wojciechowska M, Jarząb B, Liberski PP, Zakrzewska M. Transcriptional profiles of pilocytic astrocytoma are related to their three different locations, but not to radiological tumor features. BMC Cancer 2015; 15:778. [PMID: 26497896 PMCID: PMC4619381 DOI: 10.1186/s12885-015-1810-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/16/2015] [Indexed: 01/06/2023] Open
Abstract
Background Pilocytic astrocytoma is the most common type of brain tumor in the pediatric population, with a generally favorable prognosis, although recurrences or leptomeningeal dissemination are sometimes also observed. For tumors originating in the supra-or infratentorial location, a different molecular background was suggested, but plausible correlations between the transcriptional profile and radiological features and/or clinical course are still undefined. The purpose of this study was to identify gene expression profiles related to the most frequent locations of this tumor, subtypes based on various radiological features, and the clinical pattern of the disease. Methods Eighty six children (55 males and 31 females) with histologically verified pilocytic astrocytoma were included in this study. Their age at the time of diagnosis ranged from fourteen months to seventeen years, with a mean age of seven years. There were 40 cerebellar, 23 optic tract/hypothalamic, 21 cerebral hemispheric, and two brainstem tumors. According to the radiological features presented on MRI, all cases were divided into four subtypes: cystic tumor with a non-enhancing cyst wall; cystic tumor with an enhancing cyst wall; solid tumor with central necrosis; and solid or mainly solid tumor. In 81 cases primary surgical resection was the only and curative treatment, and in five cases progression of the disease was observed. In 47 cases the analysis was done by using high density oligonucleotide microarrays (Affymetrix HG-U133 Plus 2.0) with subsequent bioinformatic analyses and confirmation of the results by independent RT-qPCR (on 39 samples). Results Bioinformatic analyses showed that the gene expression profile of pilocytic astrocytoma is highly dependent on the tumor location. The most prominent differences were noted for IRX2, PAX3, CXCL14, LHX2, SIX6, CNTN1 and SIX1 genes expression even within different compartments of the supratentorial region. Analysis of the genes potentially associated with radiological features showed much weaker transcriptome differences. Single genes showed association with the tendency to progression. Conclusions Here we have shown that pilocytic astrocytomas of three different locations can be precisely differentiated on the basis of their gene expression level, but their transcriptional profiles does not strongly reflect the radiological appearance of the tumor or the course of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1810-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krzysztof Zakrzewski
- Department of Neurosurgery, Polish Mother Memorial Hospital Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland.
| | - Michał Jarząb
- Third Department of Radiotherapy and Chemotherapy, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Aleksandra Pfeifer
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Małgorzata Oczko-Wojciechowska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Barbara Jarząb
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Paweł P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| |
Collapse
|
14
|
McWilliams GD, SantaCruz K, Hart B, Clericuzio C. Occurrence of DNET and other brain tumors in Noonan syndrome warrants caution with growth hormone therapy. Am J Med Genet A 2015; 170A:195-201. [PMID: 26377682 DOI: 10.1002/ajmg.a.37379] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/30/2015] [Indexed: 11/12/2022]
Abstract
Noonan syndrome (NS) is an autosomal dominant developmental disorder caused by mutations in the RAS-MAPK signaling pathway that is well known for its relationship with oncogenesis. An 8.1-fold increased risk of cancer in Noonan syndrome has been reported, including childhood leukemia and solid tumors. The same study found a patient with a dysembryoplastic neuroepithelial tumor (DNET) and suggested that DNET tumors are associated with NS. Herein we report an 8-year-old boy with genetically confirmed NS and a DNET. Literature review identified eight other reports, supporting the association between NS and DNETs. The review also ascertained 13 non-DNET brain tumors in individuals with NS, bringing to 22 the total number of NS patients with brain tumors. Tumor growth while receiving growth hormone (GH) occurred in our patient and one other patient. It is unknown whether the development or progression of tumors is augmented by GH therapy, however there is concern based on epidemiological, animal and in vitro studies. This issue was addressed in a 2015 Pediatric Endocrine Society report noting there is not enough data available to assess the safety of GH therapy in children with neoplasia-predisposition syndromes. The authors recommend that GH use in children with such disorders, including NS, be undertaken with appropriate surveillance for malignancies. Our case report and literature review underscore the association of NS with CNS tumors, particularly DNET, and call attention to the recommendation that clinicians treating NS patients with GH do so with awareness of the possibility of increased neoplasia risk.
Collapse
Affiliation(s)
| | - Karen SantaCruz
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Blaine Hart
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Carol Clericuzio
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
15
|
Truong AY, Nicolaides TP. Targeted Therapy for MAPK Alterations in Pediatric Gliomas. BRAIN DISORDERS & THERAPY 2015; Suppl 2:005. [PMID: 26525348 PMCID: PMC4627711 DOI: 10.4172/2168-975x.s2-005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the mitogen-activated protein kinase (MAPK) pathway helps promote normal cell development, the pathway is known to contribute to the initiation and growth of many types of cancers. Tumorigenesis can result from mutations in a number of the pathway's key proteins, including but not limited to RAS, any one of the three RAF kinases, or MEK1/2. Moreover, by discovering and understanding the biology of oncogenic mutations, scientists can develop novel targeted therapies. This review describes the general history of such targeted therapies in the context of pediatric gliomas. We first describe the biology of gliomas and oncogenic mutations in the MAPK pathway and then summarize notable pre-clinical data and clinical trials for these targeted therapies.
Collapse
Affiliation(s)
- AY Truong
- Department of Pediatrics and Neurosurgery University of California, San Francisco, CA, USA
| | - TP Nicolaides
- Department of Pediatrics and Neurosurgery University of California, San Francisco, CA, USA
| |
Collapse
|
16
|
Nair S, Fort JA, Yachnis AT, Williams CA. Optic nerve pilomyxoid astrocytoma in a patient with Noonan syndrome. Pediatr Blood Cancer 2015; 62:1084-6. [PMID: 25585602 DOI: 10.1002/pbc.25382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/10/2014] [Indexed: 12/28/2022]
Abstract
Noonan syndrome (NS; MIM 163950) is an autosomal dominant syndrome which is clinically diagnosed by the distinct facial features, short stature, cardiac anomalies and developmental delay. About 50% of cases are associated with gain of function mutations in PTPN11 gene which leads to activation of the RAS/mitogen-activated protein kinase signaling pathway. This is known to have a role in tumorigenesis. Despite this, only limited reports of solid tumors (Fryssira H, Leventopoulos G, Psoni S, et al. Tumor development in three patients with Noonan syndrome. Eur J Pediatr 2008;167:1025-1031; Schuettpelz LG, McDonald S, Whitesell K et al. Pilocytic astrocytoma in a child with Noonan syndrome. Pediatr Blood Cancer 2009;53:1147-1149; Sherman CB, Ali-Nazir A, Gonzales-Gomez I, et al. Primary mixed glioneuronal tumor of the central nervous system in a patient with Noonan syndrome. J Pediatr Hematol Oncol 2009;31:61-64; Sanford RA, Bowman R, Tomita T, et al. A 16 year old male with Noonan's syndrome develops progressive scoliosis and deteriorating gait. Pediatr Neurosurg 1999;30:47-52) and no prior reports of optic gliomas have been described in patients with NS. We present here a patient with NS with a PTPN11 mutation and an optic pathway pilomyxoid astrocytoma.
Collapse
Affiliation(s)
- Sushmita Nair
- Department of Pediatric Hematology Oncology, University of Florida, Gainesville, Florida
| | | | | | | |
Collapse
|
17
|
Smpokou P, Zand D, Rosenbaum K, Summar M. Malignancy in Noonan syndrome and related disorders. Clin Genet 2015; 88:516-22. [DOI: 10.1111/cge.12568] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/29/2022]
Affiliation(s)
- P. Smpokou
- Division of Genetics & Metabolism; Children's National Health System; Washington D.C. USA
- Department of Pediatrics; The George Washington University School of Medicine & Health Sciences; Washington D.C. USA
| | - D.J. Zand
- Division of Genetics & Metabolism; Children's National Health System; Washington D.C. USA
- Department of Pediatrics; The George Washington University School of Medicine & Health Sciences; Washington D.C. USA
| | - K.N. Rosenbaum
- Division of Genetics & Metabolism; Children's National Health System; Washington D.C. USA
- Department of Pediatrics; The George Washington University School of Medicine & Health Sciences; Washington D.C. USA
| | - M.L. Summar
- Division of Genetics & Metabolism; Children's National Health System; Washington D.C. USA
- Department of Pediatrics; The George Washington University School of Medicine & Health Sciences; Washington D.C. USA
| |
Collapse
|
18
|
Mascelli S, Severino M, Raso A, Nozza P, Tassano E, Morana G, De Marco P, Merello E, Milanaccio C, Pavanello M, Rossi A, Cama A, Garrè ML, Capra V. Constitutional chromosomal events at 22q11 and 15q26 in a child with a pilocytic astrocytoma of the spinal cord. Mol Cytogenet 2014; 7:31. [PMID: 24860619 PMCID: PMC4032172 DOI: 10.1186/1755-8166-7-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/28/2014] [Indexed: 12/28/2022] Open
Abstract
We report on a 9-years-old patient with mild intellectual disability, facial dimorphisms, bilateral semicircular canal dysplasia, periventricular nodular heterotopias, bilateral hippocampal malrotation and abnormal cerebellar foliation, who developed mild motor impairment and gait disorder due to a pilocytic astrocytoma of the spinal cord. Array-CGH analysis revealed two paternal inherited chromosomal events: a 484.3 Kb duplication on chromosome 15q26.3 and a 247 Kb deletion on 22q11.23. Further, a second de novo 1.5 Mb deletion on 22q11.21 occurred. Chromosome 22 at q11.2 and chromosome 15 at q24q26 are considered unstable regions subjected to copy number variations, i.e. structural alterations of genome, mediated by low copy repeat sequences or segmental duplications. The link between some structural CNVs, which compromise fundamental processes controlling DNA stability, and genomic disorders suggest a plausible scenario for cancer predisposition. Evaluation of the genes at the breakpoints cannot account simultaneously for the phenotype and tumour development in this patient. The two paternal inherited CNVs arguably are not pathogenic and do not contribute to the clinical manifestations. Similarly, although the de novo large deletion at 22q11.21 overlaps with the Di George (DGS) critical region and results in haploinsufficiency of genes compromising critical processes for DNA stability, this case lacks several hallmarks of DGS.
Collapse
Affiliation(s)
| | | | - Alessandro Raso
- Istituto Giannina Gaslini, via G. Gaslini 5, 16147 Genoa, Italy
| | - Paolo Nozza
- Istituto Giannina Gaslini, via G. Gaslini 5, 16147 Genoa, Italy
| | - Elisa Tassano
- Istituto Giannina Gaslini, via G. Gaslini 5, 16147 Genoa, Italy
| | - Giovanni Morana
- Istituto Giannina Gaslini, via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Elisa Merello
- Istituto Giannina Gaslini, via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Marco Pavanello
- Istituto Giannina Gaslini, via G. Gaslini 5, 16147 Genoa, Italy
| | - Andrea Rossi
- Istituto Giannina Gaslini, via G. Gaslini 5, 16147 Genoa, Italy
| | - Armando Cama
- Istituto Giannina Gaslini, via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Valeria Capra
- Istituto Giannina Gaslini, via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
19
|
Jones DTW, Hutter B, Jäger N, Korshunov A, Kool M, Warnatz HJ, Zichner T, Lambert SR, Ryzhova M, Quang DAK, Fontebasso AM, Stütz AM, Hutter S, Zuckermann M, Sturm D, Gronych J, Lasitschka B, Schmidt S, Seker-Cin H, Witt H, Sultan M, Ralser M, Northcott PA, Hovestadt V, Bender S, Pfaff E, Stark S, Faury D, Schwartzentruber J, Majewski J, Weber UD, Zapatka M, Raeder B, Schlesner M, Worth CL, Bartholomae CC, von Kalle C, Imbusch CD, Radomski S, Lawerenz C, van Sluis P, Koster J, Volckmann R, Versteeg R, Lehrach H, Monoranu C, Winkler B, Unterberg A, Herold-Mende C, Milde T, Kulozik AE, Ebinger M, Schuhmann MU, Cho YJ, Pomeroy SL, von Deimling A, Witt O, Taylor MD, Wolf S, Karajannis MA, Eberhart CG, Scheurlen W, Hasselblatt M, Ligon KL, Kieran MW, Korbel JO, Yaspo ML, Brors B, Felsberg J, Reifenberger G, Collins VP, Jabado N, Eils R, Lichter P, Pfister SM. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013; 45:927-32. [PMID: 23817572 DOI: 10.1038/ng.2682] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 02/08/2023]
Abstract
Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.
Collapse
Affiliation(s)
- David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.
Collapse
Affiliation(s)
- Nicholas F Marko
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
21
|
Rodriguez FJ, Lim KS, Bowers D, Eberhart CG. Pathological and molecular advances in pediatric low-grade astrocytoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:361-79. [PMID: 23121055 DOI: 10.1146/annurev-pathol-020712-164009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pediatric low-grade astrocytomas are the most common brain tumors in children. They can have similar microscopic and clinical features, making accurate diagnosis difficult. For patients whose tumors are in locations that do not permit full resection, or those with an intrinsically aggressive biology, more effective therapies are required. Until recently, little was known about the molecular changes that drive the initiation and growth of pilocytic and other low-grade astrocytomas beyond the association of a minority of cases, primarily in the optic nerve, with neurofibromatosis type 1. Over the past several years, a wide range of studies have implicated the BRAF oncogene and other members of this signaling cascade in the pathobiology of pediatric low-grade astrocytoma. In this review, we attempt to summarize this rapidly developing field and discuss the potential for translating our growing molecular knowledge into improved diagnostic and prognostic biomarkers and new targeted therapies.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Department of Pathology, Johns Hopkins UniversitySchool of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
22
|
Jones DTW, Gronych J, Lichter P, Witt O, Pfister SM. MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci 2012; 69:1799-811. [PMID: 22159586 PMCID: PMC3350769 DOI: 10.1007/s00018-011-0898-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/31/2022]
Abstract
Pilocytic astrocytoma (PA) is the most common tumor of the pediatric central nervous system (CNS). A body of research over recent years has demonstrated a key role for mitogen-activated protein kinase (MAPK) pathway signaling in the development and behavior of PAs. Several mechanisms lead to activation of this pathway in PA, mostly in a mutually exclusive manner, with constitutive BRAF kinase activation subsequent to gene fusion being the most frequent. The high specificity of this fusion to PA when compared with other CNS tumors has diagnostic utility. In addition, the frequency of alteration of this key pathway provides an opportunity for molecularly targeted therapy in this tumor. Here, we review the current knowledge on mechanisms of MAPK activation in PA and some of the downstream consequences of this activation, which are now starting to be elucidated both in vitro and in vivo, as well as clinical considerations and possible future directions.
Collapse
Affiliation(s)
- David T. W. Jones
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jan Gronych
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan M. Pfister
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Piard J, Verloes A, Cavé H, Peuchmaur M, Bennaceur S, Leheup B. Extensive abdominal lipomatosis in a patient with Noonan/LEOPARD syndrome (Noonan syndrome-Multiple Lentigines). Am J Med Genet A 2012; 158A:1406-10. [PMID: 22528600 DOI: 10.1002/ajmg.a.35329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 02/13/2012] [Indexed: 12/31/2022]
Abstract
Noonan syndrome (NS) is a tumor predisposing disorder. Leukemia is observed in 1-3% of patients with NS, with rare occurrences of solid tumors. It also appears to predispose to non-malignant tumors. We report on a 26-year-old female with features of Noonan syndrome-Multiple Lentigines and a heterozygous mutation: c.1517A > C-p.Gln506Pro in the PTPN11 gene. The patient developed an unusual extensive lipomatosis and we discuss possible relationship between her lipomatosis and NS.
Collapse
Affiliation(s)
- Juliette Piard
- Centre de Référence Syndromes Malformatifs et Anomalies du Développement, Service de Médecine Infantile III et Génétique Clinique, CHU de Nancy et PRES de l'Université de Lorraine, UHP, Nancy, France.
| | | | | | | | | | | |
Collapse
|
24
|
Burkitt-Wright EMM, Bradley L, Shorto J, McConnell VPM, Gannon C, Firth HV, Park SM, D'Amore A, Munyard PF, Turnpenny PD, Charlton A, Wilson M, Kerr B. Neonatal lethal Costello syndrome and unusual dinucleotide deletion/insertion mutations in HRAS predicting p.Gly12Val. Am J Med Genet A 2012; 158A:1102-10. [PMID: 22495892 PMCID: PMC4495255 DOI: 10.1002/ajmg.a.35296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/29/2011] [Indexed: 01/07/2023]
Abstract
De novo heterozygous mutations in HRAS cause Costello syndrome (CS), a condition with high mortality and morbidity in infancy and early childhood due to cardiac, respiratory, and muscular complications. HRAS mutations predicting p.Gly12Val, p.Gly12Asp, and p.Gly12Cys substitutions have been associated with severe, lethal, CS. We report on molecular, clinical, and pathological findings in patients with mutations predicting HRAS p.Gly12Val that were identified in our clinical molecular genetic testing service. Such mutations were identified in four patients. Remarkably, three were deletion/insertion mutations affecting coding nucleotides 35 and 36. All patients died within 6 postnatal weeks, providing further evidence that p.Gly12Val mutations predict a very poor prognosis. High birth weight, polyhydramnios (and premature birth), cardiac hypertrophy, respiratory distress, muscle weakness, and postnatal growth failure were present. Dysmorphism was subtle or non-specific, with edema, coarsened facial features, prominent forehead, depressed nasal bridge, anteverted nares, and low-set ears. Proximal upper limb shortening, a small bell-shaped chest, talipes, and fixed flexion deformities of the wrists were seen. Neonatal atrial arrhythmia, highly suggestive of CS, was also present in two patients. One patient had congenital alveolar dysplasia, and another, born after 36 weeks' gestation, bronchopulmonary dysplasia. A rapidly fatal disease course, and the difficulty of identifying subtle dysmorphism in neonates requiring intensive care, suggest that this condition remains under-recognized, and should enter the differential diagnosis for very sick infants with a range of clinical problems including cardiac hypertrophy and disordered pulmonary development. Clinical management should be informed by knowledge of the poor prognosis of this condition.
Collapse
Affiliation(s)
- Emma M M Burkitt-Wright
- Genetic Medicine, Manchester Academic Health Science Centre, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jongmans MCJ, van der Burgt I, Hoogerbrugge PM, Noordam K, Yntema HG, Nillesen WM, Kuiper RP, Ligtenberg MJL, van Kessel AG, van Krieken JHJM, Kiemeney LALM, Hoogerbrugge N. Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation. Eur J Hum Genet 2011; 19:870-4. [PMID: 21407260 PMCID: PMC3172922 DOI: 10.1038/ejhg.2011.37] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Noonan syndrome (NS) is characterized by short stature, facial dysmorphisms and congenital heart defects. PTPN11 mutations are the most common cause of NS. Patients with NS have a predisposition for leukemia and certain solid tumors. Data on the incidence of malignancies in NS are lacking. Our objective was to estimate the cancer risk and spectrum in patients with NS carrying a PTPN11 mutation. In addition, we have investigated whether specific PTPN11 mutations result in an increased malignancy risk. We have performed a cohort study among 297 Dutch NS patients with a PTPN11 mutation (mean age 18 years). The cancer histories were collected from the referral forms for DNA diagnostics, and by consulting the Dutch national registry of pathology and the Netherlands Cancer Registry. The reported frequencies of cancer among NS patients were compared with the expected frequencies using population-based incidence rates. In total, 12 patients with NS developed a malignancy, providing a cumulative risk for developing cancer of 23% (95% confidence interval (CI), 8–38%) up to age 55 years, which represents a 3.5-fold (95% CI, 2.0–5.9) increased risk compared with that in the general population. Hematological malignancies occurred most frequently. Two malignancies, not previously observed in NS, were found: a malignant mastocytosis and malignant epithelioid angiosarcoma. No correlation was found between specific PTPN11 mutations and cancer occurrence. In conclusion, this study provides first evidence of an increased risk of cancer in patients with NS and a PTPN11 mutation, compared with that in the general population. Our data do not warrant specific cancer surveillance.
Collapse
Affiliation(s)
- Marjolijn C J Jongmans
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|