1
|
Levin SN, Tomasini MD, Knox J, Shirani M, Shebl B, Requena D, Clark J, Heissel S, Alwaseem H, Surjan R, Lahasky R, Molina H, Torbenson MS, Lyons B, Migler RD, Coffino P, Simon SM. Disruption of proteome by an oncogenic fusion kinase alters metabolism in fibrolamellar hepatocellular carcinoma. SCIENCE ADVANCES 2023; 9:eadg7038. [PMID: 37343102 PMCID: PMC10284549 DOI: 10.1126/sciadv.adg7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a usually lethal primary liver cancer driven by a somatic dysregulation of protein kinase A. We show that the proteome of FLC tumors is distinct from that of adjacent nontransformed tissue. These changes can account for some of the cell biological and pathological alterations in FLC cells, including their drug sensitivity and glycolysis. Hyperammonemic encephalopathy is a recurrent problem in these patients, and established treatments based on the assumption of liver failure are unsuccessful. We show that many of the enzymes that produce ammonia are increased and those that consume ammonia are decreased. We also demonstrate that the metabolites of these enzymes change as expected. Thus, hyperammonemic encephalopathy in FLC may require alternative therapeutics.
Collapse
Affiliation(s)
- Solomon N. Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael D. Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James Knox
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jackson Clark
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rodrigo Surjan
- General Surgery Division, Surgery Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Ron Lahasky
- Lahasky Medical Clinic, Abbeville, LA 70510, USA
- The Fibrolamellar Registry, New York, NY 10028, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | - Barbara Lyons
- The Fibrolamellar Registry, New York, NY 10028, USA
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- The Fibrolamellar Registry, New York, NY 10028, USA
| |
Collapse
|
2
|
Foglia B, Beltrà M, Sutti S, Cannito S. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses. Int J Mol Sci 2023; 24:7463. [PMID: 37108625 PMCID: PMC10138633 DOI: 10.3390/ijms24087463] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer, ranking third among the leading causes of cancer-related mortality worldwide and whose incidence varies according to geographical area and ethnicity. Metabolic rewiring was recently introduced as an emerging hallmark able to affect tumor progression by modulating cancer cell behavior and immune responses. This review focuses on the recent studies examining HCC's metabolic traits, with particular reference to the alterations of glucose, fatty acid and amino acid metabolism, the three major metabolic changes that have gained attention in the field of HCC. After delivering a panoramic picture of the peculiar immune landscape of HCC, this review will also discuss how the metabolic reprogramming of liver cancer cells can affect, directly or indirectly, the microenvironment and the function of the different immune cell populations, eventually favoring the tumor escape from immunosurveillance.
Collapse
Affiliation(s)
- Beatrice Foglia
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Marc Beltrà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Salvatore Sutti
- Department of Health Sciences, Interdisciplinary Research Center for Autoimmune Diseases, University of East Piedmont, 28100 Novara, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| |
Collapse
|
3
|
Jerves T, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic diseases. VIII. Neoplasias. Mol Genet Metab 2022; 136:118-124. [PMID: 35422340 PMCID: PMC9189061 DOI: 10.1016/j.ymgme.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Cancer, caused by multiple cumulative pathogenic variants in tumor suppressor genes and proto-oncogenes, is a leading cause of mortality worldwide. The uncontrolled and rapid cell growth of the tumors requires a reprogramming of the complex cellular metabolic network to favor anabolism. Adequate management and treatment of certain inherited metabolic diseases might prevent the development of certain neoplasias, such as hepatocellular carcinoma in tyrosinemia type 1 or hepatocellular adenomas in glycogen storage disorder type 1a. We reviewed and updated the list of known metabolic etiologies associated with various types of benign and malignant neoplasias, finding 64 relevant inborn errors of metabolism. This is the eighth article of the series attempting to create a comprehensive list of clinical and metabolic differential diagnosis by system involvement.
Collapse
Affiliation(s)
- Teodoro Jerves
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Ahmed A, Ata F, Gaber M, Petkar M, Mahfouz A, Schirmacher P, Musa S, Hashim A. Refractory Hyperammonemic encephalopathy in Fibrolamellar hepatocellular carcinoma, a case report and literature review. Curr Probl Cancer 2022; 46:100847. [PMID: 35276469 DOI: 10.1016/j.currproblcancer.2022.100847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibrolamellar hepatocellular carcinoma is a rare type of hepatocellular carcinoma with unclear etiology. Its prevalence ranges from 0.6%-5%. One of the rare manifestations of FHCC includes hyperammonemic hepatic encephalopathy (HAE). Data regarding HAE in FHCC is limited to case reports, and much is unknown, including its precipitating factors, clinical course, and management. We have reported one such case of FHCC associated HAE and presented an extensive literature review on the topic. We report the case of a 26-year-old Pakistani male who was diagnosed with fibrolamellar hepatocellular carcinoma. On day five after the first chemotherapy, he presented with nausea, vomiting, and confusion. His serum ammonia level was raised, and he was treated with lactulose and rifaximin. The patient continued chemotherapy and had recurrent admissions with HAE. A detailed workup revealed acquired ornithine transcarbamylase deficiency. Ammonia level peaked at 694 umol/L during the clinical course of his disease. He received treatment with multiple ammonia scavengers, including sodium benzoate + phenylacetate, with relief of symptoms and reduction in ammonia level. The patient was eventually lost to follow-up. HAE presents as a paraneoplastic manifestation of FHCC. Patients have laboratory features suggestive of acquired ornithine transcarbamylase deficiency. There is a variable frequency of episodes reported in the literature. Most patients respond well to ammonia scavenger therapies rather than conventional HE management with lactulose or rifaxmin.
Collapse
Affiliation(s)
- Arwa Ahmed
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical corporation, Doha, Qatar
| | - Fateen Ata
- Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar.
| | - Mohammed Gaber
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical corporation, Doha, Qatar
| | - Mahir Petkar
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Mahfouz
- Department of Radiology, Hamad Medical Corporation, Doha, Qatar
| | - Peter Schirmacher
- Department of Pathology, University of Heidelberg, Baden-Württemberg, Germany
| | - Sara Musa
- Department of Pediatrics Metabolic specialty, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Hashim
- Department of Medical Intensive Care, Hamad Medical corporation, Doha, Qatar
| |
Collapse
|
5
|
Ong Y, Huey CWT, Shelat VG. Paraneoplastic syndromes in hepatocellular carcinoma: a review. Expert Rev Gastroenterol Hepatol 2022; 16:449-471. [PMID: 35649187 DOI: 10.1080/17474124.2022.2085556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and a significant proportion (20-40%) of patients with HCC develop paraneoplastic syndromes (PNS). Despite this, there is a paucity of clinical evidence regarding PNS in HCC. AREAS COVERED A systematic search was performed to identify relevant case studies regarding PNS in HCC. Another search was conducted to identify studies that evaluated the impact of PNS on survival outcomes in HCC. Since there are currently no international guidelines for PNS in HCC, this review aims to provide comprehensive summaries and recommendations of PNS in HCC, including the pathophysiology, clinical features, diagnostic approach, and management, so that clinicians remain guided in caring for HCC patients with PNS. In general, PNS are associated with poorer survival outcomes and negative prognostic markers of HCC. EXPERT OPINION The presence of PNS has a significant influence on survival rates and clinical outcomes of patients with HCC. They contribute to significant morbidity, influencing patients' quality of life and fitness for curative and palliative therapies. Therefore, it is paramount for PNS to be integrated into routine investigations after diagnosing HCC to guide further management and prognostication of the disease.
Collapse
Affiliation(s)
- Yuki Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheong Wei Terence Huey
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Hepato-Pancreatico-Biliary Surgery, Department of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Vishalkumar Girishchandra Shelat
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Hepato-Pancreatico-Biliary Surgery, Department of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
6
|
Dinh TA, Utria AF, Barry KC, Ma R, Abou-Alfa GK, Gordan JD, Jaffee EM, Scott JD, Zucman-Rossi J, O’Neill AF, Furth ME, Sethupathy P. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 2022; 19:328-342. [PMID: 35190728 PMCID: PMC9516439 DOI: 10.1038/s41575-022-00580-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Fibrolamellar carcinoma (FLC), a rare, lethal hepatic cancer, occurs primarily in adolescents and young adults. Unlike hepatocellular carcinoma, FLC has no known association with viral, metabolic or chemical agents that cause cirrhosis. Currently, surgical resection is the only treatment demonstrated to achieve cure, and no standard of care exists for systemic therapy. Progress in FLC research illuminates a transition from an obscure cancer to one for which an interactive community seems poised to uncover fundamental mechanisms and initiate translation towards novel therapies. In this Roadmap, we review advances since the seminal discovery in 2014 that nearly all FLC tumours express a signature oncogene (DNAJB1-PRKACA) encoding a fusion protein (DNAJ-PKAc) in which the J-domain of a heat shock protein 40 (HSP40) co-chaperone replaces an amino-terminal segment of the catalytic subunit of the cyclic AMP-dependent protein kinase (PKA). Important gains include increased understanding of oncogenic pathways driven by DNAJ-PKAc; identification of potential therapeutic targets; development of research models; elucidation of immune mechanisms with potential for the development of immunotherapies; and completion of the first multicentre clinical trials of targeted therapy for FLC. In each of these key areas we propose a Roadmap for future progress.
Collapse
Affiliation(s)
- Timothy A. Dinh
- Medical Scientist Training Program, University of North Carolina, Chapel Hill, NC, USA.,Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Alan F. Utria
- Department of Surgery, University of Washington, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Kevin C. Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Rosanna Ma
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - John D. Gordan
- Gastrointestinal oncology, University of California at San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Elizabeth M. Jaffee
- Department of oncology, Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne université, Inserm, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Allison F. O’Neill
- Department of Paediatric Hematology/oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Mark E. Furth
- Fibrolamellar Cancer Foundation, Greenwich, CT, USA.,;
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,;
| |
Collapse
|
7
|
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H, Xiong J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B 2022; 12:558-580. [PMID: 35256934 PMCID: PMC8897153 DOI: 10.1016/j.apsb.2021.09.019] [Citation(s) in RCA: 333] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.
Collapse
Key Words
- 1,3-BPG, 1,3-bisphosphoglycerate
- 2-DG, 2-deoxy-d-glucose
- 3-BrPA, 3-bromopyruvic acid
- ACC, acetyl-CoA carboxylase
- ACLY, adenosine triphosphate (ATP) citrate lyase
- ACS, acyl-CoA synthease
- AKT, protein kinase B
- AML, acute myeloblastic leukemia
- AMPK, adenosine mono-phosphate-activated protein kinase
- ASS1, argininosuccinate synthase 1
- ATGL, adipose triacylglycerol lipase
- CANA, canagliflozin
- CPT, carnitine palmitoyl-transferase
- CYP4, cytochrome P450s (CYPs) 4 family
- Cancer therapy
- DNL, de novo lipogenesis
- EMT, epithelial-to-mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular-signal regulated kinase
- FABP1, fatty acid binding protein 1
- FASN, fatty acid synthase
- FBP1, fructose-1,6-bisphosphatase 1
- FFA, free fatty acid
- Fatty acid β-oxidation
- G6PD, glucose-6-phosphate dehydrogenase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GLS1, renal-type glutaminase
- GLS2, liver-type glutaminase
- GLUT1, glucose transporter 1
- GOT1, glutamate oxaloacetate transaminase 1
- Glutamine metabolism
- Glycolysis
- HCC, hepatocellular carcinoma
- HIF-1α, hypoxia-inducible factor-1 alpha
- HK, hexokinase
- HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase
- HSCs, hepatic stellate cells
- Hepatocellular carcinoma
- IDH2, isocitrate dehydrogenase 2
- LCAD, long-chain acyl-CoA dehydrogenase
- LDH, lactate dehydrogenase
- LPL, lipid lipase
- LXR, liver X receptor
- MAFLD, metabolic associated fatty liver disease
- MAGL, monoacyglycerol lipase
- MCAD, medium-chain acyl-CoA dehydrogenase
- MEs, malic enzymes
- MMP9, matrix metallopeptidase 9
- Metabolic dysregulation
- NADPH, nicotinamide adenine nucleotide phosphate
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- OTC, ornithine transcarbamylase
- PCK1, phosphoenolpyruvate carboxykinase 1
- PFK1, phosphofructokinase 1
- PGAM1, phosphoglycerate mutase 1
- PGK1, phosphoglycerate kinase 1
- PI3K, phosphoinositide 3-kinase
- PKM2, pyruvate kinase M2
- PPARα, peroxisome proliferator-activated receptor alpha
- PPP, pentose phosphate pathway
- Pentose phosphate pathway
- ROS, reactive oxygen species
- SCD1, stearoyl-CoA-desaturase 1
- SGLT2, sodium-glucose cotransporter 2
- SLC1A5/ASCT2, solute carrier family 1 member 5/alanine serine cysteine preferring transporter 2
- SLC7A5/LAT1, solute carrier family 7 member 5/L-type amino acid transporter 1
- SREBP1, sterol regulatory element-binding protein 1
- TAGs, triacylglycerols
- TCA cycle, tricarboxylic acid cycle
- TKIs, tyrosine kinase inhibitors
- TKT, transketolase
- Tricarboxylic acid cycle
- VEGFR, vascular endothelial growth factor receptor
- WD-fed MC4R-KO, Western diet (WD)-fed melanocortin 4 receptor-deficient (MC4R-KO)
- WNT, wingless-type MMTV integration site family
- mIDH, mutant IDH
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Danyu Du
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chan Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengyao Qin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| |
Collapse
|
8
|
Hundal J, Nagaraj A, Luke A, Vredenburgh J. A rare case of metastatic ectopic fibrolamellar hepatocellular carcinoma in a young healthy patient: A case report. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2021. [DOI: 10.1016/j.cpccr.2021.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Abstract
Fibrolamellar carcinoma (FLC) is a rare malignant entity arising from the liver and primarily affecting patients in late adolescence and young adulthood. FLC tumors are characterized by their unique histologic features and an only recently discovered genomic alteration: a chimeric fusion protein found in nearly all tumors. The rarity of these tumors coupled with the only recent acknowledgement of this genomic abnormality has likely led to disease under-recognition and de-prioritization of collaborative efforts aimed at establishing an evidence-guided standard of care. Surgical resection undoubtedly remains a mainstay of therapy and a necessity for cure but given the incidence of metastatic disease at diagnosis and high rates of distant relapse, systemic therapies remain a key component of disease control. There are few systemic therapies that have demonstrated proven benefit. Recent efforts have galvanized around single-institute or small consortia-based studies specifically focused on the enrollment of patients with FLC or use of agents with biologic rationale. This review will outline the current state of FLC epidemiology, histology, biology and trialed therapies derived from available published literature.
Collapse
|
10
|
Surjan RCT, Santos ESD, Silveira SDP, Makdissi FF, Machado MAC. Fibrolamellar hepatocellular carcinoma-related hyperammonemic encephalopathy: Up to now and next steps. Clin Mol Hepatol 2019; 26:231-232. [PMID: 31679315 PMCID: PMC7160343 DOI: 10.3350/cmh.2019.0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Rodrigo Cañada Trofo Surjan
- Department of Surgery, Hospital Nove de Julho, São Paulo, Brazil.,Department of Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Sergio do Prado Silveira
- Department of Surgery, Hospital Nove de Julho, São Paulo, Brazil.,Department of Oncology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Fabio Ferrari Makdissi
- Department of Gastrointestinal Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|