1
|
Soares JB, de Farias Gabriel A, Kirschnick LB, Carrard VC, Curra M, Schuch LF, Martins MAT, Martins MD. Oral mucositis assessment in pediatric and adolescent oncological patients: A systematic review. Pediatr Blood Cancer 2024:e31388. [PMID: 39420503 DOI: 10.1002/pbc.31388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Oral mucositis (OM) is a prevalent acute adverse effect of various cancer treatments. Accurate assessment of OM is vital for effective prevention and treatment strategies. However, a lack of validated pediatric instruments for evaluating OM can lead to unreliable data, and hinder interventional and epidemiological research. This study aims to evaluate the methods used for assessing OM in pediatric oncology patients. A systematic review of four databases and a manual search yielded 113 articles. Nine different scales were identified, with the World Health Organization (WHO) scale being the most commonly used (61.9%). The Children's International Mucositis Evaluation Scale (ChIMES) was used in 7.9% of the studies. Of the 8155 pediatric patients evaluated, 47.7% had both hematological malignancies and malignant solid tumors, while 46% had solely hematological malignancies. Despite the prevalence of the WHO scale, it lacks pediatric-specific criteria. Future OM research should incorporate validated tools like ChIMES for improved pediatric assessment.
Collapse
Affiliation(s)
- Júlia Breda Soares
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda de Farias Gabriel
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Borges Kirschnick
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Vinicius Coelho Carrard
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Medicine, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Curra
- Department of Oral Pathology, University of Caxias do Sul (UCS), Caxias do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lauren Frenzel Schuch
- Department of Diagnosis in Pathology and Oral Medicine, School of Dentistry, Universidad de la República, Montevideo, Uruguay
| | - Marco Antonio Trevizani Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
- Department of Oral Medicine, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Tian J, Wang J, Li S. Advances in the treatment of solid tumors in children and adolescents. CANCER INNOVATION 2023; 2:131-139. [PMID: 38090056 PMCID: PMC10686120 DOI: 10.1002/cai2.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/07/2024]
Abstract
Tumor is one of the leading causes of death in children (0 to 14-year-old) and adolescents (15 to 19-year-old) worldwide. Unlike adult tumors, childhood and adolescent tumors are unique in their type, molecular characteristics, and pathogenesis, and their treatment involves many challenges. In recent years, with the development of a large number of clinical studies, the survival rate of children and adolescents with tumors has improved significantly. The extensive research and application of optimized treatment regimens and new targeted drugs have led to new hope for the treatment of childhood and adolescent tumors. This article reviews the clinical and basic research and treatment of childhood and adolescent tumors and provides new ideas for the future development of precise treatment of childhood and adolescent tumors.
Collapse
Affiliation(s)
- Jing Tian
- Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Children's Hospital, Hematology Center, National Center for Children's HealthCapital Medical UniversityBeijingChina
| | - Jiayu Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Children's Hospital, Hematology Center, National Center for Children's HealthCapital Medical UniversityBeijingChina
| | - Sidan Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Jannier S, Kemmel V, Sebastia Sancho C, Chammas A, Sabo AN, Pencreach E, Farace F, Chenard MP, Lhermitte B, Geoerger B, Aerts I, Frappaz D, Leblond P, André N, Ducassou S, Corradini N, Bertozzi AI, Guérin E, Vincent F, Velten M, Entz-Werle N. SFCE-RAPIRI Phase I Study of Rapamycin Plus Irinotecan: A New Way to Target Intra-Tumor Hypoxia in Pediatric Refractory Cancers. Cancers (Basel) 2020; 12:cancers12103051. [PMID: 33092063 PMCID: PMC7656302 DOI: 10.3390/cancers12103051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary More and more relapsing or refractory pediatric cancers are described to present hypoxic features linked to a worse outcome. Therefore, the aim of our phase I study RAPIRI was the targeting of the central node mTor/HIF-1α with rapamycin plus irinotecan and determine the appropriated dose of this combination. As expected, the tolerance was optimal across all dose levels and no maximum tolerated dose of both drugs was reached. The pharmacokinetics (PK) helped us to refine the doses to use in the future phase II trial and the importance of PK follow-up in such combination. We also confirmed in almost half of the interpretable patients for tumor response a non-progressive disease. All those observations additionally to the ancillary’s studies provide strong evidence to propose a next trial focusing on brain tumors and sarcomas and using biweekly 125 mg/m2 irinotecan dose with a PK follow-up and a rapamycin dose of 1.5 mg/m2/day, reaching a blood concentration above 10 µg/L. Abstract Hypoxic environment is a prognostic factor linked in pediatric cancers to a worse outcome, favoring tumor progression and resistance to treatments. The activation of mechanistic Target Of Rapamycin (mTor)/hypoxia inducible factor (HIF)-1α pathway can be targeted by rapamycin and irinotecan, respectively. Therefore, we designed a phase I trial associating both drugs in pediatric refractory/relapsing solid tumors. Patients were enrolled according to a 3 + 3 escalation design with ten levels, aiming to determine the MTD (maximum tolerated dose) of rapamycin plus irinotecan. Rapamycin was administered orally once daily in a 28-day cycle (1 to 2.5 mg/m2/day), associating biweekly intravenous irinotecan (125 to 240 mg/m2/dose). Toxicities, pharmacokinetics, efficacy analyses, and pharmacodynamics were evaluated. Forty-two patients, aged from 2 to 18 years, were included. No MTD was reached. Adverse events were mild to moderate. Only rapamycin doses of 1.5 mg/m2/day reached over time clinically active plasma concentrations. Tumor responses and prolonged stable disease were associated with a mean irinotecan area under the curve of more than 400 min.mg/L. Fourteen out of 31 (45.1%) patients had a non-progressive disease at 8 weeks. Most of them were sarcomas and brain tumors. For the phase II trial, we can then propose biweekly 125 mg/m2 irinotecan dose with a pharmacokinetic (PK) follow-up and a rapamycin dose of 1.5 mg/m2/day, reaching a blood concentration above 10 µg/L.
Collapse
Affiliation(s)
- Sarah Jannier
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (S.J.); (F.V.)
| | - Véronique Kemmel
- Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France; (V.K.); (A.-N.S.); (E.G.)
- Laboratory of Pharmacology and Toxicology in Neurocardiology-EA7296, University of Strasbourg, 67000 Strasbourg, France
| | - Consuelo Sebastia Sancho
- Radiology Department, Pediatric Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (C.S.S.); (A.C.)
| | - Agathe Chammas
- Radiology Department, Pediatric Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (C.S.S.); (A.C.)
| | - Amelia-Naomie Sabo
- Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France; (V.K.); (A.-N.S.); (E.G.)
- Laboratory of Pharmacology and Toxicology in Neurocardiology-EA7296, University of Strasbourg, 67000 Strasbourg, France
| | - Erwan Pencreach
- Oncobiology Platform, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Françoise Farace
- «Circulating Tumor Cells» Translational Platform, Gustave Roussy, University of Paris-Saclay, 94800 Villejuif, France;
| | - Marie Pierre Chenard
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France; (M.P.C.); (B.L.)
- Centre de Ressources Biologiques, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Benoit Lhermitte
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France; (M.P.C.); (B.L.)
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, INSERM U1015, 94800 Villejuif, France;
| | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Didier Frappaz
- Pediatric Oncology Department, Léon Berard Institute, 69373 Lyon, France; (D.F.); (P.L.); (N.C.)
| | - Pierre Leblond
- Pediatric Oncology Department, Léon Berard Institute, 69373 Lyon, France; (D.F.); (P.L.); (N.C.)
- Pediatric Oncology Unit, Oscar Lambret Center, 59020 Lille, France
| | - Nicolas André
- Pediatric Onco-Hematology Unit, CHU La Timone, 13005 Marseille, France;
| | - Stephane Ducassou
- Pediatric Onco-Hematology Department, University Hospital of Bordeaux, 33000 Bordeaux, France;
| | - Nadège Corradini
- Pediatric Oncology Department, Léon Berard Institute, 69373 Lyon, France; (D.F.); (P.L.); (N.C.)
- Pediatric Oncology Unit, University Hospital of Nantes, 44093 Nantes, France
| | - Anne Isabelle Bertozzi
- Pediatric Onco-Hematology Department, University Hospital of Toulouse, 31059 Toulouse, France;
| | - Eric Guérin
- Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France; (V.K.); (A.-N.S.); (E.G.)
| | - Florence Vincent
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (S.J.); (F.V.)
| | - Michel Velten
- Clinical Research Department, ICANS, 67200 Strasbourg, France;
| | - Natacha Entz-Werle
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (S.J.); (F.V.)
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, 67401 Illkirch, France
- Correspondence: ; Tel.: +33-3-88-12-83-96
| |
Collapse
|
4
|
Škubník J, Jurášek M, Ruml T, Rimpelová S. Mitotic Poisons in Research and Medicine. Molecules 2020; 25:E4632. [PMID: 33053667 PMCID: PMC7587177 DOI: 10.3390/molecules25204632] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the greatest challenges of the modern medicine. Although much effort has been made in the development of novel cancer therapeutics, it still remains one of the most common causes of human death in the world, mainly in low and middle-income countries. According to the World Health Organization (WHO), cancer treatment services are not available in more then 70% of low-income countries (90% of high-income countries have them available), and also approximately 70% of cancer deaths are reported in low-income countries. Various approaches on how to combat cancer diseases have since been described, targeting cell division being among them. The so-called mitotic poisons are one of the cornerstones in cancer therapies. The idea that cancer cells usually divide almost uncontrolled and far more rapidly than normal cells have led us to think about such compounds that would take advantage of this difference and target the division of such cells. Many groups of such compounds with different modes of action have been reported so far. In this review article, the main approaches on how to target cancer cell mitosis are described, involving microtubule inhibition, targeting aurora and polo-like kinases and kinesins inhibition. The main representatives of all groups of compounds are discussed and attention has also been paid to the presence and future of the clinical use of these compounds as well as their novel derivatives, reviewing the finished and ongoing clinical trials.
Collapse
Affiliation(s)
- Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| |
Collapse
|
5
|
Qayed M, Cash T, Tighiouart M, MacDonald TJ, Goldsmith KC, Tanos R, Kean L, Watkins B, Suessmuth Y, Wetmore C, Katzenstein HM. A phase I study of sirolimus in combination with metronomic therapy (CHOAnome) in children with recurrent or refractory solid and brain tumors. Pediatr Blood Cancer 2020; 67:e28134. [PMID: 31876107 DOI: 10.1002/pbc.28134] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND/PURPOSE To determine the maximum tolerated dose, toxicities, and response of sirolimus combined with oral metronomic therapy in pediatric patients with recurrent and refractory solid and brain tumors. PROCEDURE Patients younger than 30 years of age with recurrent, refractory, or high-risk solid and brain tumors were eligible. Patients received six-week cycles of sirolimus with twice daily celecoxib, and alternating etoposide and cyclophosphamide every three weeks, with Bayesian dose escalation over four dose levels (NCT01331135). RESULTS Eighteen patients were enrolled: four on dose level (DL) 1, four on DL2, eight on DL3, and two on DL4. Diagnoses included solid tumors (Ewing sarcoma, osteosarcoma, malignant peripheral nerve sheath tumor, rhabdoid tumor, retinoblastoma) and brain tumors (glioblastoma multiforme [GBM], diffuse intrinsic pontine glioma, high-grade glioma [HGG], medulloblastoma, ependymoma, anaplastic astrocytoma, low-grade infiltrative astrocytoma, primitive neuroectodermal tumor, nongerminomatous germ cell tumor]. One dose-limiting toxicity (DLT; grade 4 neutropenia) was observed on DL2, two DLTs (grade 3 abdominal pain and grade 3 mucositis) on DL3, and two DLTs (grade 3 dehydration and grade 3 mucositis) on DL4. The recommended phase II dose of sirolimus was 2 mg/m2 (DL3). Best response was stable disease (SD) in eight patients, and partial response (PR) in one patient with GBM. A patient with HGG was removed from the study with SD and developed PR without further therapy. Western blot analysis showed inhibition of phospho-S6 kinase in all patients during the first cycle of therapy. CONCLUSION The combination of sirolimus with metronomic chemotherapy is well tolerated in children. A phase II trial of this combination is ongoing.
Collapse
Affiliation(s)
- Muna Qayed
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia.,Emory University School of Medicine, Atlanta, Georgia
| | - Thomas Cash
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia.,Emory University School of Medicine, Atlanta, Georgia
| | - Mourad Tighiouart
- Samuel Oschkin Comprehensive Cancer Institute, Los Angeles, California
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia.,Emory University School of Medicine, Atlanta, Georgia
| | - Kelly C Goldsmith
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia.,Emory University School of Medicine, Atlanta, Georgia
| | - Rachel Tanos
- Emory University School of Medicine, Atlanta, Georgia
| | - Leslie Kean
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Watkins
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia.,Emory University School of Medicine, Atlanta, Georgia
| | | | - Cynthia Wetmore
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Howard M Katzenstein
- Division of Pediatric Hematology/Oncology and Bone Marrow Transplantation, Nemours Children's Specialty Care and Wolfson Children's Hospital, Jacksonville, Florida
| |
Collapse
|