1
|
Tanaka R. Pharmacokinetic variability and significance of therapeutic drug monitoring for broad-spectrum antimicrobials in critically ill patients. J Pharm Health Care Sci 2025; 11:21. [PMID: 40098009 PMCID: PMC11912797 DOI: 10.1186/s40780-025-00425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Critically ill patients are susceptible to serious infections due to their compromised conditions and extensive use of medical devices, often requiring empiric broad-spectrum antimicrobial therapy. Failure of antimicrobial therapy in this vulnerable population has a direct impact on the patient's survival; hence, selecting the optimal dosage is critical. This population, however, exhibits complex and diverse disease-related physiological changes that can markedly alter antimicrobial disposition. Inflammatory cytokines overexpressed in the systemic inflammatory response syndrome increase vascular permeability, leading to higher volume of distribution for hydrophilic antimicrobials. These cytokines also downregulate metabolic enzyme activities, reducing the clearance of their substrates. Hypoalbuminemia can increase the volume of distribution and clearance of highly protein-bound antimicrobials. Acute kidney injury decreases, while augmented renal clearance increases the clearance of antimicrobials primarily excreted by the kidneys. Furthermore, continuous renal replacement therapy and extracorporeal membrane oxygenation used in critical illness substantially affect antimicrobial pharmacokinetics. The complex interplay of multiple factors observed in critically ill patients poses a significant challenge in predicting the pharmacokinetics of antimicrobials. Therapeutic drug monitoring is the most effective tool to address this issue, and is proactively recommended for vancomycin, teicoplanin, aminoglycosides, voriconazole, β-lactams, and linezolid in critically ill patients. To streamline this process, model-informed precision dosing is expected to promote personalized medicine for this population.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan.
| |
Collapse
|
2
|
Ye P, Shi J, Guo Z, Yang X, Li Q, Chen K, Zhao F, Zhou H, Zhang Y, van den Anker J, Song L, Zhao W. Piperacillin/tazobactam treatment in children: evidence of subtherapeutic concentrations. Front Pharmacol 2024; 15:1254005. [PMID: 39027331 PMCID: PMC11255394 DOI: 10.3389/fphar.2024.1254005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Piperacillin/tazobactam (PIP/TAZ) is used for the treatment of lower respiratory tract bacterial infections in children. This study was performed to evaluate if the current dosing regimen results in therapeutic drug concentrations. Patients and methods Patients suspected or proven to have lower respiratory tract bacterial infection and administrated PIP/TAZ intravenously for a duration of no less than 0.5 h, q6h-q12h daily, were enrolled. Blood samples were collected, and PIP concentrations were determined by high-performance liquid chromatography. The individual predicted concentration of PIP was evaluated using the individual empirical Bayesian estimate method. The evaluated PK/PD targets included (1) 70% time when the predicted free drug concentration exceeds the minimum inhibitory concentration (fT > MIC) and (2) 50% fT > 4× MIC. Probability of target attainment (PTA) was assessed by the proportion of patients who reached the PK/PD targets. The PIP concentrations between different groups of patients were compared. Results A total of 57 samples were collected from 57 patients with a median age of 2.26 years (0.17-12.58). For the PK/PD targets of 70% fT > MIC and 50% fT > 4× MIC for Pseudomonas aeruginosa and Klebsiella pneumoniae, the PTA was all 0. The median Cmin of PIP was significantly higher in infants than in children, and the median Cmin after administration in q8h was significantly higher than that after administration in q12h. Conclusion The current dose regimen of PIP/TAZ leads to extremely low plasma concentrations in most children with lower respiratory tract bacterial infections. More optimized dosing regimens or better alternative therapies need to be further explored.
Collapse
Affiliation(s)
- Panpan Ye
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Jinyi Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Zixuan Guo
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Xinmei Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Qian Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Keguang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Furong Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Haiyan Zhou
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yehui Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC, United States
- Departments of Pediatrics, Pharmacology and Physiology, Genomics and Precision Medicine, the George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Department of Paediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Linlin Song
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Hong LT, Downes KJ, FakhriRavari A, Abdul-Mutakabbir JC, Kuti JL, Jorgensen S, Young DC, Alshaer MH, Bassetti M, Bonomo RA, Gilchrist M, Jang SM, Lodise T, Roberts JA, Tängdén T, Zuppa A, Scheetz MH. International consensus recommendations for the use of prolonged-infusion beta-lactam antibiotics: Endorsed by the American College of Clinical Pharmacy, British Society for Antimicrobial Chemotherapy, Cystic Fibrosis Foundation, European Society of Clinical Microbiology and Infectious Diseases, Infectious Diseases Society of America, Society of Critical Care Medicine, and Society of Infectious Diseases Pharmacists. Pharmacotherapy 2023; 43:740-777. [PMID: 37615245 DOI: 10.1002/phar.2842] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 08/25/2023]
Abstract
Intravenous β-lactam antibiotics remain a cornerstone in the management of bacterial infections due to their broad spectrum of activity and excellent tolerability. β-lactams are well established to display time-dependent bactericidal activity, where reductions in bacterial burden are directly associated with the time that free drug concentrations remain above the minimum inhibitory concentration (MIC) of the pathogen during the dosing interval. In an effort to take advantage of these bactericidal characteristics, prolonged (extended and continuous) infusions (PIs) can be applied during the administration of intravenous β-lactams to increase time above the MIC. PI dosing regimens have been implemented worldwide, but implementation is inconsistent. We report consensus therapeutic recommendations for the use of PI β-lactams developed by an expert international panel with representation from clinical pharmacy and medicine. This consensus guideline provides recommendations regarding pharmacokinetic and pharmacodynamic targets, therapeutic drug-monitoring considerations, and the use of PI β-lactam therapy in the following patient populations: severely ill and nonseverely ill adult patients, pediatric patients, and obese patients. These recommendations provide the first consensus guidance for the use of β-lactam therapy administered as PIs and have been reviewed and endorsed by the American College of Clinical Pharmacy (ACCP), the British Society for Antimicrobial Chemotherapy (BSAC), the Cystic Fibrosis Foundation (CFF), the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), the Infectious Diseases Society of America (IDSA), the Society of Critical Care Medicine (SCCM), and the Society of Infectious Diseases Pharmacists (SIDP).
Collapse
Affiliation(s)
- Lisa T Hong
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Kevin J Downes
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Jacinda C Abdul-Mutakabbir
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
- Divisions of Clinical Pharmacy and Black Diaspora and African American Studies, University of California San Diego, La Jolla, California, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | | | - David C Young
- University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| | | | | | - Robert A Bonomo
- Cleveland Veteran Affairs Medical Center, Cleveland, Ohio, USA
- Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Gilchrist
- Imperial College Healthcare National Health Services Trust, London, UK
| | - Soo Min Jang
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Center for Clinical Research, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Queensland, Australia
- Departments of Pharmacy and Intensive Care, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Athena Zuppa
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marc H Scheetz
- College of Pharmacy, Pharmacometric Center of Excellence, Midwestern University, Downers Grove, Illinois, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
4
|
Infections Due to Antibiotic-resistant Gram-negative Bacteria in Pediatrics: Possible Management Strategies. Pediatr Infect Dis J 2022; 41:e283-e285. [PMID: 35349496 DOI: 10.1097/inf.0000000000003528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Imburgia TA, Kussin ML. A Review of Extended and Continuous Infusion Beta-Lactams in Pediatric Patients. J Pediatr Pharmacol Ther 2022; 27:214-227. [PMID: 35350159 DOI: 10.5863/1551-6776-27.3.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
Intravenous beta-lactam antibiotics are the most prescribed antibiotic class in US hospitalized patients of all ages; therefore, optimizing their dosing is crucial. Bactericidal killing is best predicted by the time in which beta-lactam drug concentrations are maintained above the organism's minimum inhibitory concentration (MIC), rather than achievement of a high peak concentration. As such, administration of beta-lactam antibiotics via extended or continuous infusions over a minimum of 3 hours, rather than standard infusions over approximately 30 minutes, has been associated with improved achievement of pharmacodynamic targets and improved clinical outcomes in adult medical literature. This review summarizes the pediatric medical literature. Applicable studies include pharmacodynamic models, case series, retrospective analyses, and prospective studies on the use of extended infusion and continuous infusion penicillins, cephalosporins, carbapenems, and monobactams in neonates, infants, children, and adolescents. Specialized patient populations with unique pharmacokinetics and high-risk infections (neonates, critically ill, febrile neutropenia, cystic fibrosis) are also reviewed. While more studies are needed to confirm prospective clinical outcomes, the current body of evidence suggests extended and continuous infusions of beta-lactam antibiotics are well tolerated in children and improve achievement of pharmacokineticpharmacodynamic targets with similar or superior clinical outcomes, particularly in infections associated with high MICs.
Collapse
Affiliation(s)
- Taylor A Imburgia
- Department of Pharmacy (TAI), WVU Medicine Children's, Morgantown, WV
| | - Michelle L Kussin
- Department of Pharmacy (MLK), Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
6
|
Estimation of cefepime, piperacillin, and tazobactam clearance with iohexol-based glomerular filtration rate in paediatric patients. Eur J Clin Pharmacol 2022; 78:989-1001. [PMID: 35275224 DOI: 10.1007/s00228-022-03307-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Estimated glomerular filtration rate (eGFR) equations reflect kidney function imprecisely. We aimed to describe whether iohexol-based GFR or eGFRs predict clearance of cefepime, piperacillin, and tazobactam in pharmacokinetic (PK) models in this population and its clinical significance. METHODS Hospitalized patients (0.5-25 years) with haemato-oncological disease and infection receiving cefepime or piperacillin/tazobactam were included. PK samples were collected at a steady state concomitantly with samples for iohexol-based GFR. PK models were developed in NONMEM. Weight, postmenstrual age, iohexol-based GFR, different eGFR equations (Schwartz updated, Lund-Malmö revised, CKD-EPI, Bouvet, Schwartz cystatin C-based) were tested as covariates. Probabilities of neurotoxic/therapeutic concentrations were assessed by simulations. RESULTS Fifteen patients receiving cefepime and 17 piperacillin/tazobactam were included (median (range) age 16.2 (1.9-26.0) and 10.5 (0.8-25.6) years, iohexol-based GFR 102 (68-140) and 116 (74-137) mL/min/1.73 m2, respectively). Two-compartment model provided the best fit for all drugs. Weight was covariate for central and peripheral compartment, clearance and intercompartmental clearance (only tazobactam), and postmenstrual age for clearance (excluding cefepime). Iohexol-based GFR was the best predictor of clearance. The model of cefepime without vs with iohexol-based GFR underestimated the probability of neurotoxic concentrations (28.3-28.6% vs 52.1-69.3%) and overestimated the probability of therapeutic concentrations (> 90% vs 81.9-87.1%) in the case of iohexol-based GFR 70-80 and 130-140 mL/min/1.73 m2, respectively. CONCLUSION Iohexol-based GFR can predict better than eGFRs the clearance of cefepime, piperacillin, and tazobactam in children and young adults with haemato-oncological disease and infection, warranting further investigation as an indicator of renal function to improve targeting of therapeutic window. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION EudraCT 2015-000,631-32, EudraCT 2016-003,374-40 (24.10.2016).
Collapse
|
7
|
Contemporary Treatment of Resistant Gram-Negative Infections in Pediatric Patients. Infect Dis Clin North Am 2022; 36:147-171. [DOI: 10.1016/j.idc.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Maarbjerg SF, Thorsted A, Friberg LE, Nielsen EI, Wang M, Schrøder H, Albertsen BK. Continuous infusion of piperacillin-tazobactam significantly improves target attainment in children with cancer and fever. Cancer Rep (Hoboken) 2021; 5:e1585. [PMID: 34796702 PMCID: PMC9575485 DOI: 10.1002/cnr2.1585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022] Open
Abstract
Background Children with febrile neutropenia commonly exhibit alterations of pharmacokinetic (PK) parameters, leading to decreased β‐lactam concentrations. Aims This study evaluated piperacillin PK and probability of target attainment (PTA) with continuous infusion of piperacillin‐tazobactam, in order to optimize the dosing regimen. Methods This prospective PK study included children with cancer, aged 1–17 years, who were treated with piperacillin‐tazobactam for suspected or verified infection. A piperacillin‐tazobactam loading dose (100 mg/kg) was administered followed by continuous infusion (300 mg/kg/day). The unbound fraction of piperacillin was quantified by high‐performance liquid chromatography and PK were described using population PK modeling. PK data was used to update and extend a previous PK model built on data following intermittent administration. Monte Carlo simulations were performed to assess PTA for targets of 100% time above the minimum inhibitory concentration (100% fT > MIC) and 50% fT > 4xMIC. Results We included 68 fever episodes among 38 children with a median (IQR) age of 6.5 years and body weight of 27.4 kg (15.1–54.0). A three‐compartment model adequately described the concentration‐time data. Median (95% confidence interval) estimates for clearance and piperacillin concentration at steady state were 14.2 L/h/70 kg (13.0; 15.3) and 47.6 mg/L (17.2; 129.5), respectively. Body weight or lean body weight was significantly associated with the PK parameters, and body weight was integrated in the final PK model. Based on piperacillin exposure, continuous infusion was the only dosing regimen to achieve optimal PTA for the P. aeruginosa breakpoint (16 mg/L) with the target of 100% fT > MIC, and a daily dose of 300 mg/kg reached optimal PTA. The strict target of 50% fT > 4xMIC (64 mg/L) was not feasibly attained by any dosing regimen at recommended doses. Conclusion Unlike conventional piperacillin intermittent administration and extended infusion regimens, continuous infusion allows the target of 100% fT > MIC to be reached for children with febrile neutropenia.
Collapse
Affiliation(s)
- Sabine F Maarbjerg
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Mikala Wang
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Schrøder
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte K Albertsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Shimamoto Y, Verstegen RHJ, Mizuno T, Schechter T, Allen U, Ito S. Population pharmacokinetics of vancomycin in paediatric patients with febrile neutropenia and augmented renal clearance: development of new dosing recommendations. J Antimicrob Chemother 2021; 76:2932-2940. [PMID: 34480578 DOI: 10.1093/jac/dkab302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The purpose of this study was to evaluate the influence of augmented renal clearance (ARC) on vancomycin clearance and provide dosage recommendations for paediatric patients with febrile neutropenia following HSCT. METHODS A population pharmacokinetic analysis was performed based on a two-compartment model structure using a non-linear mixed-effect modelling approach. Monte Carlo simulations were conducted as a target attainment analysis of AUC between 400 mg·h/L and 650 mg·h/L for MRSA at an MIC of 1 mg/L. RESULTS A total of 165 paediatric patients and 276 vancomycin serum concentrations were analysed in this study. Age, body weight, estimated glomerular filtration rate (eGFR) and fever (≥38.0°C) were identified as factors that significantly influenced vancomycin clearance. The median eGFR of the population was 143 mL/min/1.73 m2 and 34% of patients showed an eGFR ≥160 mL/min/1.73 m2, which may be classified as ARC. Our simulations showed that current dosing recommendations result in poor target attainment. In particular, children aged 6 months old to 6 years old with ARC require an initial vancomycin dose up to 35%-65% higher than the current dosing guidelines. CONCLUSIONS ARC is frequently observed in paediatric patients with post-HSCT febrile neutropenia, resulting in a significant increase in vancomycin clearance. We propose a vancomycin dosing strategy for children with febrile neutropenia following HSCT based on eGFR, age, weight and body temperature.
Collapse
Affiliation(s)
- Yuko Shimamoto
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ruud H J Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tal Schechter
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Hematology/Oncology/BMT, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Upton Allen
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shinya Ito
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Chongcharoenyanon T, Wacharachaisurapol N, Anugulruengkitt S, Maimongkol P, Anunsittichai O, Sophonphan J, Chatsuwan T, Puthanakit T. Comparison of piperacillin plasma concentrations in a prospective randomised trial of extended infusion versus intermittent bolus of piperacillin/tazobactam in paediatric patients. Int J Infect Dis 2021; 108:102-108. [PMID: 34029707 DOI: 10.1016/j.ijid.2021.05.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES To be effective, piperacillin/tazobactam (PTZ) unbound plasma levels need to be above the minimum inhibitory concentration (MIC) at least 50% of the time between dosing intervals (50% fT>MIC). This study aimed to compare the plasma piperacillin concentrations at the mid-dosing intervals (Cmid, 50% fT) and the proportion of patients achieving 50% fT>MIC between extended infusion (EI) and intermittent bolus (IB) methods in children. METHODS A prospective, randomised trial of EI versus IB of PTZ was conducted in children aged 1 month to 18 years. The PTZ dose was 100 mg/kg intravenously every 8 h. Patients were randomly assigned to receive EI (4-h infusion) or IB (30-min infusion). The primary outcome that was measured was plasma piperacillin Cmid. RESULTS Ninety patients with a median age (IQR) of 48 months (16-127) were enrolled. The most common indication for PTZ use was pneumonia (32.2%). Geometric mean (95% CI) plasma piperacillin Cmid of EI versus IB was 51.9 mg/L (40.6-66.6) versus 6.0 mg/L (4.2-8.6) (P < 0.01). The EI group had a trend of higher proportion of patients who achieved 50% fT>4xMIC (72.7% versus 30.0%; P = 0.06). CONCLUSIONS PTZ administration with EI resulted in a higher Cmid compared with IB. In settings with increased piperacillin MICs, this approach should be implemented, particularly during the empirical treatment period.
Collapse
Affiliation(s)
| | - Noppadol Wacharachaisurapol
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Suvaporn Anugulruengkitt
- Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Paediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Passara Maimongkol
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Orawan Anunsittichai
- Center of Excellence for Paediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Sophonphan
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanyawee Puthanakit
- Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Paediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
André P, Diezi L, Dao K, Crisinel PA, Rothuizen LE, Chtioui H, Decosterd LA, Diezi M, Asner S, Buclin T. Ensuring Sufficient Trough Plasma Concentrations for Broad-Spectrum Beta-Lactam Antibiotics in Children With Malignancies: Beware of Augmented Renal Clearance! Front Pediatr 2021; 9:768438. [PMID: 35083184 PMCID: PMC8785252 DOI: 10.3389/fped.2021.768438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: Broad-spectrum beta-lactams are commonly prescribed for empirical or selective treatment of bacterial infections in children with malignancies. In the immunocompromised, appropriate concentration exposure is crucial to ensure antimicrobial efficacy. Augmented renal clearance (ARC) is increasingly recognized in this population, and raises concern for unmet concentration targets. We conducted a retrospective evaluation of meropenem and piperacillin exposure in our hospital's pediatric hematology-oncology patients. Materials and Methods: We compared trough levels of meropenem and piperacillin in a cohort of unselected pediatric hematology-oncology patients stratified based on their estimated renal function as decreased, normal or with ARC, and on their neutrophil count. Results: Thirty-two children provided a total of 51 meropenem and 76 piperacillin samples. On standard intermittent intravenous regimen, 67% of all trough plasma concentrations were below targeted concentrations. In neutropenic children with bacterial infection, all meropenem and 60% of piperacillin levels were below target. Nearly two-thirds of total samples came from children with ARC. In these patients, antimicrobial exposure was insufficient in 85% of cases (compared to 36% in the decreased or normal renal function groups), despite a dosage sometimes exceeding the maximum recommended daily dose. Under continuous infusion of piperacillin, only 8% of plasma levels were insufficient. Discussion: Intermittent administration of meropenem and piperacillin often fails to ensure sufficient concentration exposure in children treated for malignancies, even at maximal recommended daily dosage. This can in part be attributed to ARC. We recommend thorough assessment of renal function, resolute dosage adjustment, continuous infusion whenever possible and systematic therapeutic drug monitoring.
Collapse
Affiliation(s)
- Pascal André
- Service of Clinical Pharmacology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Léonore Diezi
- Service of Clinical Pharmacology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Kim Dao
- Service of Clinical Pharmacology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Pierre Alex Crisinel
- Pediatric Infectious Diseases and Vaccinology Unit, Service of Pediatrics, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Laura E Rothuizen
- Service of Clinical Pharmacology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Haithem Chtioui
- Service of Clinical Pharmacology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Laurent Arthur Decosterd
- Service of Clinical Pharmacology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Manuel Diezi
- Pediatric Hemato-Oncology Unit, Service of Pediatrics, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Sandra Asner
- Pediatric Infectious Diseases and Vaccinology Unit, Service of Pediatrics, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Thierry Buclin
- Service of Clinical Pharmacology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Advancing pediatric antimicrobial stewardship: Has pharmacodynamic dosing for gram-negative infections taken effect? ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY 2021; 1:e61. [PMID: 36168509 PMCID: PMC9495429 DOI: 10.1017/ash.2021.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022]
Abstract
Objective: To characterize pharmacodynamic dosing strategies used at children’s hospitals using a national survey. Design: Survey. Setting: Children’s hospitals. Participants: Volunteer sample of antimicrobial stewardship program (ASP) respondents. Methods: A nationwide survey was conducted to gain greater insight into the current adoption of nontraditional dosing methods and monitoring of select β-lactam and fluoroquinolone antibiotics used to treat serious gram-negative infections in pediatric populations. The survey was performed through the Sharing Antimicrobial Reports for Pediatric Stewardship (SHARPS) Collaborative. Results: Of the 75 children’s hospitals that responded, 68% of programs reported adoption of pharmacodynamically optimized dosing using prolonged β-lactam infusions and 35% using continuous β-lactam infusions, although use was infrequent. Factors including routine MIC monitoring and formal postgraduate training and board certification of ASP pharmacists were associated with increased utilization of pharmacodynamic dosing. In addition, 60% of programs reported using pharmacodynamically optimized ciprofloxacin and 14% reported using pharmacodynamically optimized levofloxacin. Only 20% of programs monitored β-lactam levels; they commonly cited lack of published guidance, practitioner experience, and laboratomory support as reasons for lack of utilization. Less physician time dedicated to ASP programs was associated with lower adoption of optimized dosing. Conclusions: Use of pharmacodynamic dosing through prolonged and continuous infusions of β-lactams have not yet been routinely adopted at children’s hospitals. Further guidance from trials and literature are needed to continue to guide pediatric pharmacodynamic dosing efforts. Children’s hospitals should utilize these data to compare practices and to prioritize further research and education efforts.
Collapse
|
13
|
Costenaro P, Minotti C, Cuppini E, Barbieri E, Giaquinto C, Donà D. Optimizing Antibiotic Treatment Strategies for Neonates and Children: Does Implementing Extended or Prolonged Infusion Provide any Advantage? Antibiotics (Basel) 2020; 9:antibiotics9060329. [PMID: 32560411 PMCID: PMC7344997 DOI: 10.3390/antibiotics9060329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Optimizing the use of antibiotics has become mandatory, particularly for the pediatric population where limited options are currently available. Selecting the dosing strategy may improve overall outcomes and limit the further development of antimicrobial resistance. Time-dependent antibiotics optimize their free concentration above the minimal inhibitory concentration (MIC) when administered by continuous infusion, however evidences from literature are still insufficient to recommend its widespread adoption. The aim of this review is to assess the state-of-the-art of intermittent versus prolonged intravenous administration of antibiotics in children and neonates with bacterial infections. We identified and reviewed relevant literature by searching PubMed, from 1 January 1 2000 to 15 April 2020. We included studies comparing intermittent versus prolonged/continuous antibiotic infusion, among the pediatric population. Nine relevant articles were selected, including RCTs, prospective and retrospective studies focusing on different infusion strategies of vancomycin, piperacillin/tazobactam, ceftazidime, cefepime and meropenem in the pediatric population. Prolonged and continuous infusions of antibiotics showed a greater probability of target attainment as compared to intermittent infusion regimens, with generally good clinical outcomes and safety profiles, however its impact in terms on efficacy, feasibility and toxicity is still open, with few studies led on children and adult data not being fully extendable.
Collapse
Affiliation(s)
- Paola Costenaro
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Chiara Minotti
- Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Elena Cuppini
- Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Elisa Barbieri
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| | - Carlo Giaquinto
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
- Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
- Paediatric Network for Treatment of AIDS (Penta) Foundation, 35128 Padua, Italy
| | - Daniele Donà
- Division of Paediatric Infectious Diseases, Department for Women's and Children's Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
14
|
Saffioti C, Mesini A, Barco S, Cangemi G, Bandettini R, Castagnola E. Piperacillin-tazobactam concentration target attainment in children with cancer. Pediatr Blood Cancer 2019; 66:e27882. [PMID: 31222911 DOI: 10.1002/pbc.27882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/08/2022]
|