1
|
Kawankar N, Shanmukhaiah C, Kulkarni B. Identification of a GFI1B variant associated with abnormal platelet function and normal platelet count. Br J Haematol 2025; 206:777-780. [PMID: 39711203 DOI: 10.1111/bjh.19964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Affiliation(s)
- Nikesh Kawankar
- ICMR-National Institute of Immunohaematology (NIIH), K.E.M. Hospital Campus, Mumbai, India
| | | | - Bipin Kulkarni
- ICMR-National Institute of Immunohaematology (NIIH), K.E.M. Hospital Campus, Mumbai, India
| |
Collapse
|
2
|
Frenkel M, Hall A, Meyn MS, Diamond CA. An oligogenic case of severe neonatal thrombocytopenia and a purportedly benign variant in GFI1B requiring reinterpretation. Platelets 2023; 34:2237592. [PMID: 37577973 PMCID: PMC10653983 DOI: 10.1080/09537104.2023.2237592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Although thrombocytopenia in neonatal intensive care patients is rarely due to inherited disorders, the number of genetic variants implicated in platelet defects has grown dramatically with increasing genome-wide sequencing. Here we describe a case of severe, oligogenic neonatal thrombocytopenia and reinterpret a reportedly benign mutation that is likely pathogenic. Despite this patient's synonymous mutation (GFI1B 576 C>T, Phe192=) being annotated as benign, GFI1B is a well-known regulator of megakaryopoiesis, this variant alters splicing and megakaryocyte maturation, and our analysis of existing genome-wide associated studies demonstrates that it likely causes gray platelet syndrome. This variant has not been reported in a case of life-threatening thrombocytopenia. We propose that the severity of this patient's phenotype is due to synergistic epistasis between the intrinsic platelet defect caused by this mutation and her concomitant inherited PMM2 congenital glycosylation disorder neither of which have been associated with such a severe phenotype. This case highlights the importance of whole-exome/genome sequencing for critically ill patients, reexamining variant interpretation when clinically indicated, and the need to study diverse genetic variation in hematopoiesis.
Collapse
Affiliation(s)
- Max Frenkel
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, USA
- Medical Scientist Training Program, University of Wisconsin, Madison, WI, USA
| | - April Hall
- Center for Human Genomics and Precision Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - M Stephen Meyn
- Center for Human Genomics and Precision Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Carol A Diamond
- Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Zhang L, Xin M, Wang P. Identification of a novel snoRNA expression signature associated with overall survival in patients with lung adenocarcinoma: A comprehensive analysis based on RNA sequencing dataset. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7837-7860. [PMID: 34814278 DOI: 10.3934/mbe.2021389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since multiple studies have reported that small nucleolar RNAs (snoRNAs) can be serve as prognostic biomarkers for cancers, however, the prognostic values of snoRNAs in lung adenocarcinoma (LUAD) remain unclear. Therefore, the main work of this study is to identify the prognostic snoRNAs of LUAD and conduct a comprehensive analysis. The Cancer Genome Atlas LUAD cohort whole-genome RNA-sequencing dataset is included in this study, prognostic analysis and multiple bioinformatics approaches are used for comprehensive analysis and identification of prognostic snoRNAs. There were seven LUAD prognostic snoRNAs were screened in current study. We also constructed a novel expression signature containing five LUAD prognostic snoRNAs (snoU109, SNORA5A, SNORA70, SNORD104 and U3). Survival analysis of this expression signature reveals that LUAD patients with high risk score was significantly related to an unfavourable overall survival (adjusted P = 0.01, adjusted hazard ratio = 1.476, 95% confidence interval = 1.096-1.987). Functional analysis indicated that LUAD patients with different risk score phenotypes had significant differences in cell cycle, apoptosis, integrin, transforming growth factor beta, ErbB, nuclear factor kappa B, mitogen-activated protein kinase, phosphatidylinositol-3-kinase and toll like receptor signaling pathway. Immune microenvironment analysis also indicated that there were significant differences in immune microenvironment scores among LUAD patients with different risk score. In conclusion, this study identified an novel expression signature containing five LUAD prognostic snoRNAs, which may be serve as an independent prognostic indicator for LUAD patients.
Collapse
Affiliation(s)
- Linbo Zhang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning 530021, China
| | - Mei Xin
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning 530021, China
| | - Peng Wang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning 530021, China
| |
Collapse
|
4
|
Faleschini M, Papa N, Morel-Kopp MC, Marconi C, Giangregorio T, Melazzini F, Bozzi V, Seri M, Noris P, Pecci A, Savoia A, Bottega R. Dysregulation of oncogenic factors by GFI1B p32: investigation of a novel GFI1B germline mutation. Haematologica 2021; 107:260-267. [PMID: 33472357 PMCID: PMC8719102 DOI: 10.3324/haematol.2020.267328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 11/10/2022] Open
Abstract
GFI1B is a transcription factor essential for the regulation of erythropoiesis and megakaryopoiesis, and pathogenic variants have been associated with thrombocytopenia and bleeding. Analysing thrombocytopenic families by whole exome sequencing, we identified a novel GFI1B variant (c.648+5G>A), which causes exon 9 skipping and overexpression of a shorter p32 isoform. We report the clinical data of our patients and critically review the phenotype observed in individuals with different GFI1B variants leading to the same effect on the p32 expression. Since p32 is increased in acute and chronic leukemia cells, we tested the expression level of genes playing a role in various type of cancers, including hematological tumors and found that they are significantly dysregulated, suggesting a potential role for GFI1B in carcinogenesis regulation. Increasing the detection of individuals with GFI1B variants will allow us to better characterize this rare disease and determine whether it is associated with an increased risk of developing malignancies.
Collapse
Affiliation(s)
| | - Nicole Papa
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital and Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney
| | - Caterina Marconi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna
| | | | - Federica Melazzini
- Biotechnology Research Laboratories, IRCCS Policlinico San Matteo Foundation, Pavia
| | - Valeria Bozzi
- Biotechnology Research Laboratories, IRCCS Policlinico San Matteo Foundation, Pavia
| | - Marco Seri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna
| | - Patrizia Noris
- Biotechnology Research Laboratories, IRCCS Policlinico San Matteo Foundation, Pavia
| | - Alessandro Pecci
- Biotechnology Research Laboratories, IRCCS Policlinico San Matteo Foundation, Pavia
| | - Anna Savoia
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste.
| | - Roberta Bottega
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste
| |
Collapse
|
5
|
Brøns N, Zaninetti C, Ostrowski SR, Petersen J, Greinacher A, Rossing M, Leinøe E. A novel homozygous GFI1B variant in 2 sisters with thrombocytopenia and severe bleeding tendency. Platelets 2020; 32:701-704. [PMID: 32633597 DOI: 10.1080/09537104.2020.1786041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Genetic variants in growth factor-independent 1B (GFI1B), encoding transcription factor GFI1B, are causative of platelet-type bleeding disorder-17. Presently, 53 cases of GFI1B associated inherited thrombocytopenia (IT) have been published, however only three were homozygous. The bleeding- and platelet phenotypes of these patients depend on location and inheritance pattern of the GFI1B variant. We report a novel homozygous GFI1B (Thr174Ile) variant located in the first Zinc finger domain of GFI1B in two sisters of Palestinian ancestry born to consanguineous parents. They experienced severe bleeding tendency at moderately reduced platelet counts. Flow cytometry and immunofluorescent microscopy confirmed the diagnostic features of GFI1B associated IT: a reduced content of alpha granules and aberrant expression of the stem cell marker CD34 on platelets. Transcription factor GFI1B is differentially expressed during hemato- and lymphopoiesis. In addition, to platelet function investigations, we present results of lymphoid subgroup analyses and deformability of red cells measured by ektacytometry.
Collapse
Affiliation(s)
- Nanna Brøns
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Carlo Zaninetti
- Department of Clinical Immunology, Greifswald University Hospital, Greifswald, Germany
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Jesper Petersen
- Department of Haematology Research Laboratory, Herlev Hospital, Copenhagen University Hospital, Denmark
| | - Andreas Greinacher
- Department of Clinical Immunology, Greifswald University Hospital, Greifswald, Germany
| | - Maria Rossing
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Eva Leinøe
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|