1
|
Curing the Curable: Managing Low-Risk Acute Lymphoblastic Leukemia in Resource Limited Countries. J Clin Med 2021; 10:jcm10204728. [PMID: 34682851 PMCID: PMC8540602 DOI: 10.3390/jcm10204728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Although childhood acute lymphoblastic leukemia (ALL) is curable, global disparities in treatment outcomes remain. To reduce these global disparities in low-middle income countries (LMIC), a paradigm shift is needed: start with curing low-risk ALL. Low-risk ALL, which accounts for >50% of patients, can be cured with low-toxicity therapies already defined by collaborative studies. We reviewed the components of these low-toxicity regimens in recent clinical trials for low-risk ALL and suggest how they can be adopted in LMIC. In treating childhood ALL, the key is risk stratification, which can be resource stratified. NCI standard-risk criteria (age 1–10 years, WBC < 50,000/uL) is simple yet highly effective. Other favorable features such as ETV6-RUNX1, hyperdiploidy, early peripheral blood and bone marrow responses, and simplified flow MRD at the end of induction can be added depending on resources. With limited supportive care in LMIC, more critical than relapse is treatment-related morbidity and mortality. Less intensive induction allows early marrow recovery, reducing the need for intensive supportive care. Other key elements in low-toxicity protocol designs include: induction steroid type; high-dose versus low-dose escalating methotrexate; judicious use of anthracyclines; and steroid pulses during maintenance. In summary, the first effective step in curing ALL in LMIC is to focus on curing low-risk ALL with less intensive therapy and less toxicity.
Collapse
|
2
|
Martínez-Sánchez MV, Fuster JL, Campillo JA, Galera AM, Bermúdez-Cortés M, Llinares ME, Ramos-Elbal E, Pascual-Gázquez JF, Fita AM, Martínez-Banaclocha H, Galián JA, Gimeno L, Muro M, Minguela A. Expression of NK Cell Receptor Ligands on Leukemic Cells Is Associated with the Outcome of Childhood Acute Leukemia. Cancers (Basel) 2021; 13:cancers13102294. [PMID: 34064810 PMCID: PMC8151902 DOI: 10.3390/cancers13102294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Natural killer cells (NK cells) of the innate immune system are suspected of playing an important role in eliminating residual leukemia cells during maintenance chemotherapy given to children with acute lymphoblastic leukemia for about two years. This study analyzes the expression of ligands for the receptors that regulate the function of NK cells on leukemic cells of more than one hundred children with acute lymphoid and myeloid leukemia. Our results show that the loss of expression of some molecules involved in the activation of NK cells is associated with poorer survival. In addition, a genetic combination of molecules that interact to regulate NK cell function seems to be associated with a higher relapse rate during/after chemotherapy and shorter patient survival. Children who carry this genetic combination are refractory to current chemotherapy treatments, and stem cell transplantation does not seem to contribute to their cure either, and therefore, they should be considered as candidates for alternative biological therapies that might offer better results. Abstract Acute leukemia is the most common malignancy in children. Most patients are cured, but refractory/relapsed AML and ALL are the first cause of death from malignancy in children. Maintenance chemotherapy in ALL has improved survival by inducing leukemic cell apoptosis, but immune surveillance effectors such as NK cells might also contribute. The outcome of B-ALL (n = 70), T-ALL (n = 16), and AML (n = 16) pediatric patients was evaluated according to leukemic cell expression of ligands for activating and inhibiting receptors that regulate NK cell functioning. Increased expression of ULBP-1, a ligand for NKG2D, but not that of CD112 or CD155, ligands for DNAM-1, was associated with poorer 5-year event-free survival (5y-EFS, 77.6% vs. 94.9%, p < 0.03). Reduced expression of HLA-C on leukemic cells in patients with the KIR2DL1/HLA-C*04 interaction was associated with a higher rate of relapse (17.6% vs. 4.4%, p = 0.035) and lower 5y-EFS (70.6% vs. 92.6%, p < 0.002). KIR2DL1/HLA-C*04 interaction was an independent predictive factor of events (HR = 4.795, p < 0.005) or death (HR = 6.731, p < 0.005) and might provide additional information to the current risk stratification. Children who carry the KIR2DL1/HLA-C*04 interaction were refractory to current chemotherapy treatments, including allogeneic stem cell transplantation; therefore, they should be considered as candidates for alternative biological therapies that might offer better results.
Collapse
Affiliation(s)
- María Victoria Martínez-Sánchez
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - José Luis Fuster
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - José Antonio Campillo
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - Ana María Galera
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Mar Bermúdez-Cortés
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - María Esther Llinares
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Eduardo Ramos-Elbal
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Juan Francisco Pascual-Gázquez
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Ana María Fita
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (J.L.F.); (A.M.G.); (M.B.-C.); (M.E.L.); (E.R.-E.); (J.F.P.-G.); (A.M.F.)
| | - Helios Martínez-Banaclocha
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - José Antonio Galián
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - Lourdes Gimeno
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
- Human Anatomy Department, University of Murcia (UM), 30100 Murcia, Spain
| | - Manuel Muro
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.V.M.-S.); (J.A.C.); (H.M.-B.); (J.A.G.); (L.G.); (M.M.)
- Correspondence: ; Tel.: +34-968-395-379
| |
Collapse
|