1
|
Di J, Yenwongfai LN, Arshad T, Huang B, McDowell JK, Durbin EB, Munker R, Wei S. Prognostic Significance and Treatment Response Associations of Genetic Mutations in Chronic Myelomonocytic Leukemia: A Retrospective Cohort Study. Biomedicines 2024; 12:2476. [PMID: 39595041 PMCID: PMC11591710 DOI: 10.3390/biomedicines12112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background: This retrospective cohort study investigates the prognostic significance of genetic mutations in Chronic Myelomonocytic Leukemia (CMML) and their association with treatment responses among patients treated at a single institution, juxtaposed with a statewide dataset from Kentucky. Methods: The study includes 51 patients diagnosed with CMML under the World Health Organization criteria from January 2005 to December 2023. It examines their genomic profiles and subsequent survival outcomes. The analysis also categorizes patients into CMML-1 and CMML-2 subtypes and assesses survival differences between transformed and non-transformed cases. Results: Mutations in TET2, ASXL1, and SRSF2 were found to significantly influence survival, establishing their roles as critical prognostic markers. Additionally, the cohort from the University of Kentucky exhibited distinct survival patterns compared to the broader Kentucky state population, suggesting that demographic and treatment-related factors could underlie these variances. Conclusions: This research underscores the pivotal role of targeted genetic profiling in deciphering the progression of CMML and refining therapeutic strategies. The findings emphasize the necessity for advanced genetic screening in managing CMML to better understand individual prognoses and optimize treatment efficacy, thereby offering insights that could lead to personalized treatment approaches.
Collapse
Affiliation(s)
- Jing Di
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Leonard N. Yenwongfai
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Talal Arshad
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Bin Huang
- Division of Cancer Biostatistics, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, Cancer Research Informatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA
| | - Jaclyn K. McDowell
- Markey Cancer Center, Cancer Research Informatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA
| | | | - Reinhold Munker
- Division of Hematology, Blood and Marrow Transplantation, University of Kentucky, Lexington, KY 40536, USA;
| | - Sainan Wei
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Masetti R, Baccelli F, Leardini D, Locatelli F. Venetoclax: a new player in the treatment of children with high-risk myeloid malignancies? Blood Adv 2024; 8:3583-3595. [PMID: 38701350 PMCID: PMC11319833 DOI: 10.1182/bloodadvances.2023012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Venetoclax selectively inhibits B-cell lymphoma 2 (BCL-2) and restores apoptotic signaling of hematologic malignant cells. Venetoclax, in combination with hypomethylating and low-dose cytotoxic agents, has revolutionized the management of older patients affected by acute myeloid leukemia (AML) and that of patients unfit to receive intensive chemotherapy. In a single phase 1 pediatric trial conducted on relapsed or refractory AML, the combination of venetoclax and intensive chemotherapy was shown to be safe and yielded promising response rates. In addition, several retrospective studies in children with AML reported that venetoclax, when combined with hypomethylating agents and cytotoxic drugs, seems to be a safe and efficacious bridge to transplant. The promising results on the use of venetoclax combinations in advanced myelodysplastic syndromes (MDS) and therapy-related MDS/AML have also been reported in small case series. This review summarizes the available current knowledge about venetoclax use in childhood high-risk myeloid neoplasms and discusses the possible integration of BCL-2 inhibition in the current treatment algorithm of these children. It also focuses on specific genetic subgroups potentially associated with response in preclinical and clinical studies.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
3
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Calvo KR, Hickstein DD. The spectrum of GATA2 deficiency syndrome. Blood 2023; 141:1524-1532. [PMID: 36455197 PMCID: PMC10082373 DOI: 10.1182/blood.2022017764] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Inherited or de novo germ line heterozygous mutations in the gene encoding the transcription factor GATA2 lead to its deficiency. This results in a constellation of clinical features including nontuberculous mycobacterial, bacterial, fungal, and human papillomavirus infections, lymphedema, pulmonary alveolar proteinosis, and myelodysplasia. The onset, or even the presence, of disease is highly variable, even in kindreds with the identical mutation in GATA2. The clinical manifestations result from the loss of a multilineage progenitor that gives rise to B lymphocytes, monocytes, natural killer cells, and dendritic cells, leading to cytopenias of these lineages and subsequent infections. The bone marrow failure is typically characterized by hypocellularity. Dysplasia may either be absent or subtle but typically evolves into multilineage dysplasia with prominent dysmegakaryopoiesis, followed in some instances by progression to myeloid malignancies, specifically myelodysplastic syndrome, acute myelogenous leukemia, and chronic myelomonocytic leukemia. The latter 3 malignancies often occur in the setting of monosomy 7, trisomy 8, and acquired mutations in ASXL1 or in STAG2. Importantly, myeloid malignancy may represent the primary presentation of disease without recognition of other syndromic features. Allogeneic hematopoietic stem cell transplantation (HSCT) results in reversal of the phenotype. There remain important unanswered questions in GATA2 deficiency, including the following: (1) Why do some family members remain asymptomatic despite harboring deleterious mutations in GATA2? (2) What are the genetic changes that lead to myeloid progression? (3) What causes the apparent genetic anticipation? (4) What is the role of preemptive HSCT?
Collapse
Affiliation(s)
- Katherine R. Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Dennis D. Hickstein
- Immune Deficiency – Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
West RR, Calvo KR, Embree LJ, Wang W, Tuschong LM, Bauer TR, Tillo D, Lack J, Droll S, Hsu AP, Holland SM, Hickstein DD. ASXL1 and STAG2 are common mutations in GATA2 deficiency patients with bone marrow disease and myelodysplastic syndrome. Blood Adv 2022; 6:793-807. [PMID: 34529785 PMCID: PMC8945308 DOI: 10.1182/bloodadvances.2021005065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
Patients with GATA2 deficiencyharbor de novo or inherited germline mutations in the GATA2 transcription factor gene, predisposing them to myeloid malignancies. There is considerable variation in disease progression, even among family members with the same mutation in GATA2. We investigated somatic mutations in 106 patients with GATA2 deficiency to identify acquired mutations that are associated with myeloid malignancies. Myelodysplastic syndrome (MDS) was the most common diagnosis (∼44%), followed by GATA2 bone marrow immunodeficiency disorder (G2BMID; ∼37%). Thirteen percent of the cohort had GATA2 mutations but displayed no disease manifestations. There were no correlations between age or sex with disease progression or survival. Cytogenetic analyses showed a high incidence of abnormalities (∼43%), notably trisomy 8 (∼23%) and monosomy 7 (∼12%), but the changes did not correlate with lower survival. Somatic mutations in ASXL1 and STAG2 were detected in ∼25% of patients, although the mutations were rarely concomitant. Mutations in DNMT3A were found in ∼10% of patients. These somatic mutations were found similarly in G2BMID and MDS, suggesting clonal hematopoiesis in early stages of disease, before the onset of MDS. ASXL1 mutations conferred a lower survival probability and were more prevalent in female patients. STAG2 mutations also conferred a lower survival probability, but did not show a statistically significant sex bias. There was a conspicuous absence of many commonly mutated genes associated with myeloid malignancies, including TET2, IDH1/2, and the splicing factor genes. Notably, somatic mutations in chromatin-related genes and cohesin genes characterized disease progression in GATA2 deficiency.
Collapse
Affiliation(s)
- Robert R. West
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | | | - Lisa J. Embree
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | - Weixin Wang
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Laura M. Tuschong
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | - Thomas R. Bauer
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | - Desiree Tillo
- Genomics Core, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Justin Lack
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | - Stephenie Droll
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Amy P. Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Dennis D. Hickstein
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| |
Collapse
|
6
|
Nichols-Vinueza DX, Parta M, Shah NN, Cuellar-Rodriguez JM, Bauer TR, West RR, Hsu AP, Calvo KR, Steinberg SM, Notarangelo LD, Holland SM, Hickstein DD. Donor source and post-transplantation cyclophosphamide influence outcome in allogeneic stem cell transplantation for GATA2 deficiency. Br J Haematol 2022; 196:169-178. [PMID: 34580862 PMCID: PMC8702451 DOI: 10.1111/bjh.17840] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023]
Abstract
GATA2 deficiency was described in 2011, and shortly thereafter allogeneic hematopoietic stem cell transplantation (HSCT) was shown to reverse the hematologic disease phenotype. However, there remain major unanswered questions regarding the type of conditioning regimen, type of donors, and graft-versus-host disease (GVHD) prophylaxis. We report 59 patients with GATA2 mutations undergoing HSCT at National Institutes of Health between 2013 and 2020. Primary endpoints were engraftment, reverse of the clinical phenotype, secondary endpoints were overall survival (OS), event-free survival (EFS), and the incidence of acute and chronic GVHD. The OS and EFS at 4 years were 85·1% and 82·1% respectively. Ninety-six percent of surviving patients had reversal of the hematologic disease phenotype by one-year post-transplant. Incidence of grade III-IV aGVHD in matched related donor (MRD) and matched unrelated donor recipients (URD) patients receiving Tacrolimus/Methotrexate for GVHD prophylaxis was 32%. In contrast, in the MRD and URD who received post-transplant cyclophosphamide (PT/Cy), no patient developed grade III-IV aGVHD. Six percent of haploidentical related donor (HRD) recipients developed grade III-IV aGVHD. In summary, a busulfan-based HSCT regimen in GATA2 deficiency reverses the hematologic disease phenotype, and the use of PT/Cy reduced the risk of both aGVHD and cGVHD.
Collapse
Affiliation(s)
- Diana X. Nichols-Vinueza
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD
| | - Mark Parta
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Nirali N. Shah
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Jennifer M. Cuellar-Rodriguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD
| | - Thomas R. Bauer
- Immune Deficiency – Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robert R. West
- Immune Deficiency – Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD
| | | | - Seth M. Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD
| | - Dennis D. Hickstein
- Immune Deficiency – Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|