1
|
Bibbò S, Capone E, Lovato G, Ponziani S, Lamolinara A, Iezzi M, Lattanzio R, Mazzocco K, Morini M, Giansanti F, De Laurenzi V, Whitfield J, Iacobelli S, Ippoliti R, Beaulieu ME, Soucek L, Sala A, Sala G. EV20/Omomyc: A novel dual MYC/HER3 targeting immunoconjugate. J Control Release 2024; 374:171-180. [PMID: 39128771 DOI: 10.1016/j.jconrel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
MYC is one of the most important therapeutic targets in human cancer. Many attempts have been made to develop small molecules that could be used to curb its activity in patients, but most failed to identify a suitable direct inhibitor. After years of preclinical characterization, a tissue-penetrating peptide MYC inhibitor, called Omomyc, has been recently successfully used in a Phase I dose escalation study in late-stage, all-comers solid tumour patients. The study showed drug safety and positive signs of clinical activity, prompting the beginning of a new Phase Ib combination study currently ongoing in metastatic pancreatic adenocarcinoma patients. In this manuscript, we have explored the possibility to improve Omomyc targeting to specific cancer subtypes by linking it to a therapeutic antibody. The new immunoconjugate, called EV20/Omomyc, was developed by linking a humanised anti-HER3 antibody, named EV20, to Omomyc using a bifunctional linker. EV20/Omomyc shows antigen-dependent penetrating activity and therapeutic efficacy in a metastatic model of neuroblastoma. This study suggests that directing Omomyc into specific cell types using antibodies recognising tumour antigens could improve its therapeutic activity in specific indications, like in the paediatric setting.
Collapse
Affiliation(s)
- Sandra Bibbò
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulio Lovato
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sara Ponziani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy; Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Katia Mazzocco
- Laboratory of Experimental Therap ies in Oncology, IRCCS Istituto Giannina Gaslini
| | - Martina Morini
- Laboratory of Experimental Therap ies in Oncology, IRCCS Istituto Giannina Gaslini
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy.
| | | | - Laura Soucek
- Peptomyc S.L., Barcelona 08035, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Arturo Sala
- Centre for Inflammation Research and Translational Medicine (CIRTM); College, of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom,.
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
2
|
Heim C, Hartig L, Weinelt N, Moser LM, Salzmann-Manrique E, Merker M, Wels WS, Tonn T, Bader P, Klusmann JH, van Wijk SJ, Rettinger E. Bortezomib promotes the TRAIL-mediated killing of resistant rhabdomyosarcoma by ErbB2/Her2-targeted CAR-NK-92 cells via DR5 upregulation. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200802. [PMID: 38706988 PMCID: PMC11067460 DOI: 10.1016/j.omton.2024.200802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Treatment resistance and immune escape are hallmarks of metastatic rhabdomyosarcoma (RMS), underscoring the urgent medical need for therapeutic agents against this disease entity as a key challenge in pediatric oncology. Chimeric antigen receptor (CAR)-based immunotherapies, such as the ErbB2 (Her2)-CAR-engineered natural killer (NK) cell line NK-92/5.28.z, provide antitumor cytotoxicity primarily through CAR-mediated cytotoxic granule release and thereafter-even in cases with low surface antigen expression or tumor escape-by triggering intrinsic NK cell-mediated apoptosis induction via additional ligand/receptors. In this study, we showed that bortezomib increased susceptibility toward apoptosis in clinically relevant RMS cell lines RH30 and RH41, and patient-derived RMS tumor organoid RMS335, by upregulation of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor DR5 in these metastatic, relapsed/refractory (r/r) RMS tumors. Subsequent administration of NK-92/5.28.z cells significantly enhanced antitumor activity in vitro. Applying recombinant TRAIL instead of NK-92/5.28.z cells confirmed that the synergistic antitumor effects of the combination treatment were mediated via TRAIL. Western blot analyses indicated that the combination treatment with bortezomib and NK-92/5.28.z cells increased apoptosis by interacting with the nuclear factor κB, JNK, and caspase pathways. Overall, bortezomib pretreatment can sensitize r/r RMS tumors to CAR- and, by upregulating DR5, TRAIL-mediated cytotoxicity of NK-92/5.28.z cells.
Collapse
Affiliation(s)
- Catrin Heim
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Leonie Hartig
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Nadine Weinelt
- Institute for Experimental Paediatric Haematology and Oncology (EPOH), 60528 Frankfurt am Main, Germany
| | - Laura M. Moser
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Emilia Salzmann-Manrique
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Michael Merker
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Torsten Tonn
- DRK-Blutspendedienst Baden-Württemberg/Hessen gemeinnützige GmbH, 60505 Frankfurt am Main, Germany
| | - Peter Bader
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Jan-Henning Klusmann
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Sjoerd J.L. van Wijk
- Institute for Experimental Paediatric Haematology and Oncology (EPOH), 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
| | - Eva Rettinger
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Wang SS, Davenport AJ, Iliopoulos M, Hughes-Parry HE, Watson KA, Arcucci V, Mulazzani M, Eisenstat DD, Hansford JR, Cross RS, Jenkins MR. HER2 chimeric antigen receptor T cell immunotherapy is an effective treatment for diffuse intrinsic pontine glioma. Neurooncol Adv 2023; 5:vdad024. [PMID: 37152812 PMCID: PMC10158089 DOI: 10.1093/noajnl/vdad024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) and other diffuse midline gliomas (DMG) of the thalamus and spinal cord are rare but devastating high-grade glial tumors of childhood with no curative treatment. Despite aggressive treatment attempts the prognosis has remained poor. Chimeric antigen receptor (CAR) T cell therapy has been identified as a promising new approach in the treatment of DMG tumors; however, additional targets are urgently required given known tumor heterogeneity and the prospect of antigen escape of this cancer. Methods Using cell surface mass spectrometry, we detected high HER2 cell surface protein across a panel of patient-derived DIPG cells, thereby identifying an existing CAR T cell therapy for use in DIPG. Primary human T cells were transduced to express a second-generation HER2 CAR and interrogated for efficacy against patient-derived DIPG cells. Results HER2 CAR T cells demonstrated potent and antigen-specific cytotoxicity and cytokine secretion when co-cultured with patient-derived DIPG cells. Furthermore, HER2 CAR T cells provided a significant regression in intracranial DIPG xenograft tumors. Conclusions HER2 CAR T cells are already in clinic development and are well tolerated in pediatric patients. Here we provide strong preclinical evidence for the inclusion of DIPG patients in future pediatric CNS tumor HER2 CAR T cell clinical trials.
Collapse
Affiliation(s)
| | | | - Melinda Iliopoulos
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Hannah E Hughes-Parry
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Katherine A Watson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Valeria Arcucci
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthias Mulazzani
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - David D Eisenstat
- Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Jordan R Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, South Australia Health and Medical Research Institute, South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Misty R Jenkins
- Corresponding Author: Misty R. Jenkins, Immunology Division, WEHI, 1G Royal Parade, VIC 3052, Australia ()
| |
Collapse
|
4
|
Schakelaar MY, Monnikhof M, Crnko S, Pijnappel E, Meeldijk J, Ten Broeke T, Bovenschen N. Cellular Immunotherapy for Medulloblastoma. Neuro Oncol 2022; 25:617-627. [PMID: 36219688 PMCID: PMC10076947 DOI: 10.1093/neuonc/noac236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/12/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, making up ~20% of all primary pediatric brain tumors. Current therapies consist of maximal surgical resection and aggressive radio- and chemotherapy. A third of the treated patients cannot be cured and survivors are often left with devastating long-term side effects. Novel efficient and targeted treatment is desperately needed for this patient population. Cellular immunotherapy aims to enhance and utilize immune cells to target tumors, and has been proven successful in various cancers. However, for MB, the knowledge and possibilities of cellular immunotherapy are limited. In this review, we provide a comprehensive overview of the current status of cellular immunotherapy for MB, from fundamental in vitro research to in vivo models and (ongoing) clinical trials. In addition, we compare our findings to cellular immunotherapy in glioma, an MB-like intracranial tumor. Finally, future possibilities for MB are discussed to improve efficacy and safety.
Collapse
Affiliation(s)
- Michael Y Schakelaar
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Matthijs Monnikhof
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Emma Pijnappel
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jan Meeldijk
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|