1
|
Mohamad EA, Shehata AM, Abobah AM, Kholief AT, Ahmed MA, Abdelhakeem ME, Dawood NK, Mohammed HS. Chitosan-based films blended with moringa leaves and MgO nanoparticles for application in active food packaging. Int J Biol Macromol 2023; 253:127045. [PMID: 37776934 DOI: 10.1016/j.ijbiomac.2023.127045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
This study aims to address the issue of environmental pollution caused by non-biodegradable petroleum-based food packaging by exploring the application of biodegradable films. Film casting was employed to fabricate food packaging films from chitosan (CS) and polyvinyl alcohol (PVA) polymers blended with moringa extract (MoE) and various concentrations of magnesium oxide nanoparticles (MgO NPs). The films were characterized through multiple techniques, including UV spectroscopy, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR). The study investigated the physicomechanical properties, water solubility, water vapor transmission rate, oxygen permeability, migration test, biodegradability, contact angle, anti-fogging, antibacterial and antifungal activity, and application of the films for food packaging. The results showed that blending CS/PVA films with MoE and MgO NPs significantly improved their mechanical properties. The highest tensile strength of 98 MPa was observed in the CPMMgO-0.5 film. The solubility of the films was low, with CPMMgO-0 and CPMMgO-0.25 demonstrating the lowest solubility as weight decreased by 3.41 % and 3.47 %, respectively. The water vapor transmission rate and oxygen permeability decreased with increasing MgO NP concentrations, with the CPMMgO-0.5 film exhibiting the lowest values. The films also demonstrated good biodegradability, anti-fogging ability, antibacterial and antifungal activity, and low water solubility, enabling bead encapsulation over 14 days in good condition. Moreover, the thermal stability of the films was improved, extending the shelf life of bread. Therefore, the fabricated films provide a promising alternative to non-degradable plastic packaging, which heavily contributes to environmental pollution.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia; Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Asmaa M Shehata
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Aya M Abobah
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Aya T Kholief
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Manar A Ahmed
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mariam E Abdelhakeem
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nour K Dawood
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Suyatma NE, Gunawan S, Putri RY, Tara A, Abbès F, Hastati DY, Abbès B. Active Biohybrid Nanocomposite Films Made from Chitosan, ZnO Nanoparticles, and Stearic Acid: Optimization Study to Develop Antibacterial Films for Food Packaging Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:926. [PMID: 36769933 PMCID: PMC9917979 DOI: 10.3390/ma16030926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Chitosan is a biopolymer with great potential as food packaging due to its ability to create a film without additives and its better mechanical and antibacterial qualities compared to other biopolymers. However, chitosan film still has limitations due to its high moisture sensitivity and limited flexibility. Incorporating ZnO nanoparticles (ZnO-NPs) and stearic acid (SA) into chitosan films was expected to improve tensile strength, water vapor barrier, and antibacterial capabilities. This study aims to find the optimal formula for biohybrid nanocomposite films composed of chitosan, ZnO-NPs, and SA. The full factorial design approach-4 × 2 with 3 replicates, i.e., two independent variables, namely %ZnO-NPs at 4 levels (0%, 0.5%, 1%, and 3%, w/w) and %SA at 2 levels (0% and 5%, w/w)-was utilized to optimize chitosan-based biohybrid nanocomposite films, with the primary interests being antibacterial activities, water vapor barrier, and tensile strength. The incorporation of ZnO-NPs into chitosan films could increase antibacterial activity, while SA decreased it. The addition of SA had a good effect only in decreasing water vapor transmission rate (WVTR) values but a detrimental effect on other film properties mentioned above. The incorporation of ZnO-NPs enhanced all functional packaging properties of interest. The suggested solution of the optimization study has been validated. As a result, the formula with the inclusion of 1% ZnO-NPs without SA is optimal for the fabrication of active antibacterial films with excellent multifunctional packaging capabilities.
Collapse
Affiliation(s)
- Nugraha Edhi Suyatma
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16880, Indonesia
| | - Sanjaya Gunawan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16880, Indonesia
| | - Rani Yunia Putri
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16880, Indonesia
| | - Ahmed Tara
- MATIM, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse, 51100 Reims, France
| | - Fazilay Abbès
- MATIM, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse, 51100 Reims, France
| | - Dwi Yuni Hastati
- Food Quality Assurance, College of Vocational Studies, IPB University, Bogor 16128, Indonesia
| | - Boussad Abbès
- MATIM, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse, 51100 Reims, France
| |
Collapse
|
3
|
Liu J, Huang J, Ying Y, Hu L, Hu Y. pH-sensitive and antibacterial films developed by incorporating anthocyanins extracted from purple potato or roselle into chitosan/polyvinyl alcohol/nano-ZnO matrix: Comparative study. Int J Biol Macromol 2021; 178:104-112. [PMID: 33609585 DOI: 10.1016/j.ijbiomac.2021.02.115] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022]
Abstract
pH-sensitive and antibacterial films based on chitosan/polyvinyl alcohol/nano-ZnO (CPZ) containing anthocyanins extracted from purple potato (PPE) or roselle (RE) were developed. When incorporated with PPE or RE, the moisture contents and flexibility of film significantly reduced (P < 0.05), while mechanical resistance of film was significantly enhanced (P < 0.05). Water vapor permeability (WVP) of film was slightly influenced by the addition of PPE or RE (P > 0.05). CPZ-RE film exhibited darker color and lower light transmittance than CPZ-PPE film at the same incorporation level. CPZ-PPE and CPZ-RE films exhibited distinguishable color changes in different pH buffer solutions. CPZ-PPE films exhibited higher antibacterial activity against Escherichia coli and Staphylococcus aureus than CPZ-RE films. Moreover, film could effectively monitor spoilage degree of shrimp when film changed from purple to light-green. Our results suggested CPZ-PPE and CPZ-RE films have promising potential as active and smart packaging materials for applications in food industry.
Collapse
Affiliation(s)
- Jialin Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jiayin Huang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yubin Ying
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Lingping Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
4
|
Qiao C, Ma X, Wang X, Liu L. Structure and properties of chitosan films: Effect of the type of solvent acid. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.109984] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Influence of salts in the Hofmeister series on the physical gelation behavior of gelatin in aqueous solutions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Kowalczyk D, Skrzypek T, Basiura-Cembala M, Łupina K, Mężyńska M. The effect of potassium sorbate on the physicochemical properties of edible films based on pullulan, gelatin and their blends. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|