1
|
Luo X, Chen X, Cong X, Niu H, Zhou F, Song J, Hu L, Pei Y, Guo Y. Prenatal diagnosis, ultrasound findings, and pregnancy outcome of 17q12 deletion and duplication syndromes: a retrospective case series. Arch Gynecol Obstet 2024; 310:2921-2930. [PMID: 39433644 DOI: 10.1007/s00404-024-07789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Analyze the ultrasound findings, single-nucleotide polymorphism array (SNP-array) results, and pregnancy outcomes of fetuses with 17q12 deletions and duplications in the second and third trimesters. Explore the prenatal ultrasound characteristics and pregnancy outcomes of these fetuses. METHODS Retrospective data were collected for 16 fetuses diagnosed with 17q12 deletion and seven fetuses with 17q12 duplication through SNP-array during prenatal diagnosis at a single Chinese tertiary medical center from January 2017 to December 2023. Maternal demographics, ultrasound findings of the fetuses, SNP-array results, pregnancy outcomes, and follow-up information were reviewed and analyzed. Peripheral blood from the parents was extracted to determine whether the CNVs in the fetuses were inherited or de novo. RESULTS The copy-number variation (CNV) sizes ranged from 1.39 to 1.94 Mb in cases of 17q12 deletion and from 1.42 to 1.91 Mb in cases of 17q12 duplication. These CNVs included 15 OMIM genes, such as HNF1B, LHX1, and ACACA. In fetuses with a 17q12 deletion, the primary manifestation was renal abnormalities (93.8%, 15/16). Of these, 13 cases (81.3%, 13/16) exhibited bilateral or unilateral hyperechogenic kidneys, and 12 cases (75%, 12/16) had multicystic hyperechogenic kidneys. Two cases (12.5%, 2/16) showed multiple organ structural abnormalities. In fetuses with a 17q12 duplication, four cases (57.1%, 4/7) revealed cardiovascular system abnormalities, including tetralogy of fallot, pulmonary artery stenosis, ventricular septal defect, and tricuspid regurgitation. Two cases (28.6%, 2/7) presented with upper gastrointestinal obstruction. Additionally, one case was particularly unique, characterized by multiple structural malformations, such as ventricular septal defect, microcephaly, cleft lip, and palate. Nine cases opted for pregnancy termination, and 14 chose to continue the pregnancy. Two cases underwent surgical treatment after birth for upper gastrointestinal obstruction, and the prognosis was good. Among the 10 cases of 17q12 deletion, six cases showed consistent prenatal ultrasound findings and postnatal clinical features. Four cases were found to have discrepancies with prenatal ultrasound findings; while the renal ultrasound phenotype appeared normal during the last follow-up, two of these cases were subsequently diagnosed with neuropsychiatric phenotypes. CONCLUSION Our study expanded the clinical phenotype spectrum of fetuses with 17q12 deletion and duplication, and conducted a preliminary evaluation of prenatal ultrasound findings and postnatal clinical phenotypes in follow-up cases. We further demonstrated a high correlation between fetuses with 17q12 deletion and hyperechogenic, multicystic kidneys. The primary manifestations in fetuses with 17q12 duplication are likely cardiovascular system malformations, which also exhibit a broad spectrum of phenotypic features.
Collapse
Affiliation(s)
- Xiaojin Luo
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Xiaohang Chen
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Xiaoyi Cong
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Hongyan Niu
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Fei Zhou
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Jinshuang Song
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Liang Hu
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Yuanyuan Pei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Yanyun Guo
- Department of Community Center, Longgang District People's Hospital of Shenzhen City (The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen), Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Sánchez-Cazorla E, Carrera N, García-González MÁ. HNF1B Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis. Int J Mol Sci 2024; 25:10609. [PMID: 39408938 PMCID: PMC11476927 DOI: 10.3390/ijms251910609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype-phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Miguel Ángel García-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Han JY, Gwack J, Kim TY, Park J. A Korean Family Presenting with Renal Cysts and Maturity-Onset Diabetes of the Young Caused by a Novel In-Frame Deletion of HNF1B. Int J Mol Sci 2024; 25:9823. [PMID: 39337310 PMCID: PMC11432569 DOI: 10.3390/ijms25189823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, furthering our understanding of HNF1B-related phenotypes. We conducted sequential genetic testing to investigate the glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas observed in the proband. A comprehensive clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Considering the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous HNF1B variant, c.36_38delCCT/p.(Leu13del) (reference transcript ID: NM_000458.4), as the most likely cause of MODY in the proband. The patient's clinical presentation was consistent with MODY caused by the HNF1B variant, showing signs of glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas. Sanger sequencing confirmed the same HNF1B variant and established the paternally inherited autosomal dominant status of the heterozygous variant in the patient, as well as in his father and sister. The presence of early-onset diabetes, renal cysts, a family history of the condition, and nephropathy appearing before or after the diagnosis of diabetes mellitus (DM) suggests a diagnosis of HNF1B-MODY5. Early diagnosis is crucial for preventing complications of DM, enabling family screening, providing pre-conceptional genetic counseling, and monitoring kidney function decline.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Tae Yun Kim
- Department of Thoracic and Cardiovascular Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
4
|
Buffin-Meyer B, Richard J, Guigonis V, Weber S, König J, Heidet L, Moussaoui N, Vu JP, Faguer S, Casemayou A, Prakash R, Baudouin V, Hogan J, Alexandrou D, Bockenhauer D, Bacchetta J, Ranchin B, Pruhova S, Zieg J, Lahoche A, Okorn C, Antal-Kónya V, Morin D, Becherucci F, Habbig S, Liebau MC, Mauras M, Nijenhuis T, Llanas B, Mekahli D, Thumfart J, Tönshoff B, Massella L, Eckart P, Cloarec S, Cruz A, Patzer L, Roussey G, Vrillon I, Dunand O, Bessenay L, Taroni F, Zaniew M, Louillet F, Bergmann C, Schaefer F, van Eerde AM, Schanstra JP, Decramer S. Renal and Extrarenal Phenotypes in Patients With HNF1B Variants and Chromosome 17q12 Microdeletions. Kidney Int Rep 2024; 9:2514-2526. [PMID: 39156164 PMCID: PMC11328578 DOI: 10.1016/j.ekir.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Hepatocyte nuclear factor 1-beta (HNF1B) gene variants or the chromosome 17q12 deletion (17q12del) represent the most common monogenic cause of developmental kidney disease. Although neurodevelopmental disorders have been associated with the 17q12del, specific genotype-phenotype associations with respect to kidney function evolution have not yet been fully defined. Here, we aimed to determine whether 17q12del or specific HNF1B variants were associated with kidney survival in a large patient population with HNF1B disease. Methods This was a retrospective observational study involving 521 patients with HNF1B disease from 14 countries using the European Reference Network for rare kidney diseases with detailed information on the HNF1B genotype (HNF1B variants or the 17q12del). Median follow-up time was 11 years with 6 visits per patient. The primary end point was progression to chronic kidney disease (CKD) stage 3 (estimated glomerular filtration rate [eGFR] < 60 ml/min per 1.73 m2). Secondary end points were the development of hypomagnesemia or extrarenal disorders, including hyperuricemia and hyperglycemia. Results Progression toward CKD stage 3 was significantly delayed in patients with the 17q12del compared to patients with HNF1B variants (hazard ratio [HR]: 0.29, 95% confidence interval [CI]: 0.19-0.44, P < 0.001). Progression toward CKD stage 3 was also significantly delayed when HNF1B variants involved the HNF1B Pit-1, Oct-1, and Unc-86 homeodomain (POUh) DNA-binding and transactivation domains rather than the POU-specific domain (POUs) DNA-binding domain (HR: 0.15 [95% CI: 0.06-0.37), P < 0.001 and HR: 0.25 (95% CI: 0.11-0.57), P = 0.001, respectively). Finally, the 17q12del was positively associated with hypomagnesemia and negatively associated with hyperuricemia, but not with hyperglycemia. Conclusion Patients with the 17q12del display a significantly better kidney survival than patients with other HNF1B variants; and for the latter, variants in the POUs DNA-binding domain lead to the poorest kidney survival. These are clinically relevant HNF1B kidney genotype-phenotype correlations that inform genetic counseling.
Collapse
Affiliation(s)
- Bénédicte Buffin-Meyer
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
| | - Juliette Richard
- Department of Pediatric Internal Medicine, Rheumatology and Nephrology, Toulouse University Hospital, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
| | - Vincent Guigonis
- Department of Pediatrics, Hôpital Mère-Enfant, University Hospital of Limoges, Limoges, France
| | - Stefanie Weber
- Pediatric Nephrology, University Children's Hospital Marburg, Marburg, Germany
| | - Jens König
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Laurence Heidet
- APHP, Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants malades, Paris, France
- Centre De Référence Des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Nabila Moussaoui
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
- Filière ORphan KIdney Disease (ORKiD), Montpellier, France
| | - Jeanne-Pierrette Vu
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
| | - Stanislas Faguer
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
- Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, and French Intensive Care Renal Network, Toulouse, France
| | - Audrey Casemayou
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
- Department of Nephrology and Organ Transplantation, University Hospital of Toulouse, and French Intensive Care Renal Network, Toulouse, France
| | - Richa Prakash
- APHP, Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants malades, Paris, France
- Centre De Référence Des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Véronique Baudouin
- Nephrology Department, Robert Debré Hospital, APHP Nord, Paris University, Paris, France
| | - Julien Hogan
- Nephrology Department, Robert Debré Hospital, APHP Nord, Paris University, Paris, France
| | | | - Detlef Bockenhauer
- University College London, Department of Renal Medicine, London, UK
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- INSERM 1033, Faculté de Médecine Lyon Est, Lyon, France
| | - Bruno Ranchin
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Annie Lahoche
- Unité de néphrologie, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Christine Okorn
- Department of Pediatrics II, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Violetta Antal-Kónya
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Denis Morin
- Néphrologie Pédiatrique, CHU de Montpellier, Montpellier, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Montpellier, France
- Université de Montpellier, Montpellier, France
| | | | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics and Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Mathilde Mauras
- Department of Pediatrics, Hôpital Nord, CHU de Saint-Etienne, Saint-Etienne, France
| | - Tom Nijenhuis
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Brigitte Llanas
- Unité de Néphrologie Pédiatrique, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Centre de Références des Maladies rénales rares du Sud-Ouest (SORARE), Bordeaux, France
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospitals, Leuven, Belgium
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Julia Thumfart
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Laura Massella
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Philippe Eckart
- Department of Pediatrics, University Hospital of Caen, Caen, France
| | - Sylvie Cloarec
- Service de Néphrologie Pédiatrique, Hôpital Clocheville, CHRU, Tours, France
- Centre De Compétence Maladies Rénales Rares, Filière ORphan KIdney Disease (ORKiD), France
| | - Alejandro Cruz
- Pediatric Nephrology, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Ludwig Patzer
- Klinik für Kinder- und Jugendmedizin, Krankenhaus St. Elisabeth und St. Barbara, Halle/Saale, Germany
| | - Gwenaelle Roussey
- Service des Maladies Chroniques de l'Enfant, Hopital Mère Enfant, CHU Nantes, Nantes, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Nantes, France
| | - Isabelle Vrillon
- Service de Néphrologie Pédiatrique, Hôpital des Enfants, CHRU Nancy, Vandoeuvre les Nancy, France
| | - Olivier Dunand
- Service de Néphrologie Pédiatrique, CHU Réunion site Félix GUYON, St Denis, Ile de La Réunion, France
| | - Lucie Bessenay
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Francesca Taroni
- Pediatric Nephrology, Dialysis and Transplantation Unit Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Ferielle Louillet
- Département de Pédiatrie, Unité de Néphrologie-Hémodialyse, CHU Charles Nicolle, Rouen, France
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | | | - Joost P. Schanstra
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- University Paul Sabatier, Toulouse-III, Toulouse, France
| | - Stéphane Decramer
- National Institute of Health and Medical Research (INSERM), UMR 1297, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- Department of Pediatric Internal Medicine, Rheumatology and Nephrology, Toulouse University Hospital, Toulouse, France
- Centre De Référence Des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse University Hospital, Toulouse, France
| |
Collapse
|
5
|
Zhang S, Ma Y, Zang X, Heng H, Liu X, Peng G, Liu R, Liang J, Geng H. A Case of 17q12 Microdeletion Syndrome in a MODY5 Type Diabetes with HNF-1β Gene Mutation Accompanied. Appl Clin Genet 2024; 17:125-130. [PMID: 39050772 PMCID: PMC11268705 DOI: 10.2147/tacg.s465859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) is an autosomal dominant inherited disorder prevalent among adolescents. Typically, it manifests with hyperglycemia before the age of 25. MODY5 is attributed to a mutation in the Hepatocyte Nuclear Factor-1β (HNF-1β) gene. A complete absence of HNF-1β is observed in 50% of those with MODY5. The 17q12 microdeletion syndrome closely linked with MODY5. Its incidence in the general population is around 1 in 14,500 and is linked with facial deformities, diabetes, polycystic kidneys, pancreatic hypertrophy, liver anomalies, and neuropsychological impairments. The most primary clinical signs are predominantly associated with the HNF-1β gene deletion. We chronicle the case of a male of 19 years of age diagnosed with diabetes, who, alongside persistent liver damage and polycystic kidneys, was referred from a community hospital to the Xuzhou Central Hospital. His clinical presentation included diabetes, liver dysfunction, polycystic kidneys, lipid irregularities, insulin resistance, and fatty atrophy. Subsequent genetic screening unveiled a 17q12 chromosomal deletion and an absence of the Hepatocyte Nuclear Factor-1β (HNF-1β) gene. Hence, for adolescent patients lacking a familial diabetes history but exhibiting symptoms like polycystic kidneys, liver damage, lipid irregularities, and fatty atrophy, a thorough assessment for the 17q12 microdeletion syndrome becomes imperative.
Collapse
Affiliation(s)
- Shuping Zhang
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Yamei Ma
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Xiu Zang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Hao Heng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Gangshan Peng
- The Affiliated Xuzhou Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Ran Liu
- The Affiliated Xuzhou Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jun Liang
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Houfa Geng
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Werfel L, Martens H, Hennies I, Gjerstad AC, Fröde K, Altarescu G, Banerjee S, Valenzuela Palafoll I, Geffers R, Kirschstein M, Christians A, Bjerre A, Haffner D, Weber RG. Diagnostic Yield and Benefits of Whole Exome Sequencing in CAKUT Patients Diagnosed in the First Thousand Days of Life. Kidney Int Rep 2023; 8:2439-2457. [PMID: 38025229 PMCID: PMC10658255 DOI: 10.1016/j.ekir.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.
Collapse
Affiliation(s)
- Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kerstin Fröde
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Gheona Altarescu
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Aarthy R, Aston-Mourney K, Amutha A, Mikocka-Walus A, Anjana RM, Unnikrishnan R, Jebarani S, Venkatesan U, Gopi S, Radha V, Mohan V. Identification of appropriate biochemical parameters and cut points to detect Maturity Onset Diabetes of Young (MODY) in Asian Indians in a clinic setting. Sci Rep 2023; 13:11408. [PMID: 37452084 PMCID: PMC10349068 DOI: 10.1038/s41598-023-37766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes which is detected by genetic testing. We looked at clinical and biochemcial variables that could help detect possible MODY among Asian Indians with youth-onset diabetes. From the diabetes electronic medical records of a diabetes care centre in Chennai in southern India, demographic, anthropometric, and biochemical details of 34 genetically confirmed MODY participants were extracted. They were compared with patients with type 1 diabetes (T1D) (n = 1011) and type 2 diabetes (T2D) (n = 1605), diagnosed below 30 years of age. Clinical and biochemical variables including body mass index (BMI), glycated hemoglobin, HDL cholesterol, and C-peptide (fasting and stimulated) were analyzed to determine whether cut points could be derived to identify individuals who could be sent for genetic testing to diagnose or rule out MODY in this ethnic group. The age at diagnosis was higher for T2D (26.5 ± 4.0 years) compared to T1D (18.2 ± 6.1 years) and MODY (17.8 ± 6.0 years). Individuals with MODY had BMI, glycated hemoglobin, total cholesterol, triglycerides, HDL cholesterol, and C-peptide levels which were intermediate between T1D and T2D. The identified probable parameters and their cut points to identify cases for MODY genetic screening were BMI 21.2-22.7 kg/m2, glycated hemoglobin 7.2-10%, HDL cholesterol 43-45 mg/dl, fasting C -peptide, 1.2-2.1 ng/ml and stimulated C-peptide, 2.1-4.5 ng/ml. Asian Indians with MODY have clinical features that are intermediate between T1D and T2D and selected biochemical parameters, especially stimulated C peptide cut points were the most useful to diagnose MODY.
Collapse
Affiliation(s)
- Ramasamy Aarthy
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University Geelong, Geelong, Australia
| | - Kathryn Aston-Mourney
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University Geelong, Geelong, Australia
| | - Anandakumar Amutha
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | | | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- Dr. Mohan's Diabetes Specialties Centre (IDF Centre of Excellence in Diabetes Care), No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India
| | - Ranjit Unnikrishnan
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- Dr. Mohan's Diabetes Specialties Centre (IDF Centre of Excellence in Diabetes Care), No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India
| | - Saravanan Jebarani
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Ulagamathesan Venkatesan
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Sundaramoorthy Gopi
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Venkatesan Radha
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India.
- Dr. Mohan's Diabetes Specialties Centre (IDF Centre of Excellence in Diabetes Care), No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India.
| |
Collapse
|
8
|
Morton A, Li L, Wilson C. Pregnancy outcome with maternal HNF1B gene mutations and 17q12 deletions. Obstet Med 2023; 16:78-82. [PMID: 37441663 PMCID: PMC10334039 DOI: 10.1177/1753495x221109734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 02/12/2024] Open
Abstract
There is an increasing body of literature regarding monogenic diabetes, particularly the more common forms of glucokinase and HNF1-alpha mutations (MODY2 and MODY3). There is relatively little published literature regarding rarer mutations. HNF1-beta mutations and 17q12 deletions may be associated with a broad range of organ dysfunction, renal disease and diabetes in particular resulting in high-risk pregnancies. This manuscript describes pregnancy outcomes in a woman with an HNF1-beta mutation and 2 women with an HNF1B/17q12 deletion and reviews the previously published literature. It highlights the significant rate of adverse maternal and fetal outcomes, and the maternal features suggestive of the diagnosis which should be considered in preconception counselling.
Collapse
Affiliation(s)
- Adam Morton
- Adam Morton, Obstetric Medicine, Mater Health, Raymond Terrace, South Brisbane, Queensland, Australia.
| | - Ling Li
- Obstetric Medicine, Mater Health, South Brisbane, Australia
| | | |
Collapse
|
9
|
Aarthy R, Aston-Mourney K, Amutha A, Mikocka-Walus A, Anjana RM, Unnikrishnan R, Jebarani S, Venkatesan U, Gopi S, Radha V, Mohan V. Prevalence, clinical features and complications of common forms of Maturity Onset Diabetes of the Young (MODY) seen at a tertiary diabetes centre in south India. Prim Care Diabetes 2023:S1751-9918(23)00071-2. [PMID: 37055265 DOI: 10.1016/j.pcd.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Maturity Onset Diabetes of the Young (MODY) is a form of monogenic diabetes caused by mutations in single genes, affecting adolescents or young adults. MODY is frequently misdiagnosed as type 1 diabetes (T1). Though several studies from India have reported on the genetic aspects of MODY, the clinical profile, complications and treatments given have not been reported so far, nor compared with T1D and type 2 diabetes (T2D). AIM To determine the prevalence, clinical features, and complications of common forms of genetically proven MODY seen at a tertiary diabetes centre in South India and compare them with matched individuals with T1D and T2D. METHODS Five hundred and thirty individuals identified as 'possible MODY' based on clinical criteria, underwent genetic testing for MODY. Diagnosis of MODY was confirmed based on pathogenic or likely pathogenic variants found using Genome Aggregation Database (gnomAD) and American College of Medical Genetics (ACMG) criteria. The clinical profile of MODY was compared with individuals with type 1 (T1D) and type 2 (T2D) diabetes, matched for duration of diabetes. Retinopathy was diagnosed by retinal photography; nephropathy by urinary albumin excretion > 30 µg/mg of creatinine and neuropathy by vibration perception threshold > 20 v on biothesiometry. RESULTS Fifty-eight patients were confirmed to have MODY (10.9%). HNF1A-MODY (n = 25) was the most common subtype followed by HNF4A-MODY (n = 11), ABCC8-MODY (n = 11), GCK-MODY (n = 6) and HNF1B-MODY (n = 5). For comparison of clinical profile, only the three 'actionable' subtypes - defined as those who may respond to sulphonylureas, namely, HNF1A, HNF4A and ABCC8-MODY, were included. Age at onset of diabetes was lower among HNF4A-MODY and HNF1A-MODY than ABCC8-MODY, T1D and T2D. Prevalence of retinopathy and nephropathy was higher among the three MODY subtypes taken together (n = 47) as compared to T1D (n = 86) and T2D (n = 86). CONCLUSION This is one of the first reports of MODY subtypes from India based on ACMG and gnomAD criteria. The high prevalence of retinopathy and nephropathy in MODY points to the need for earlier diagnosis and better control of diabetes in individuals with MODY.
Collapse
Affiliation(s)
- Ramasamy Aarthy
- Madras Diabetes Research Foundation, Chennai, India; Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia
| | - Kathryn Aston-Mourney
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia
| | | | | | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation, Chennai, India; Dr. Mohan's Diabetes Specialties Centre, Chennai, India
| | - Ranjit Unnikrishnan
- Madras Diabetes Research Foundation, Chennai, India; Dr. Mohan's Diabetes Specialties Centre, Chennai, India
| | | | | | | | | | - Viswanathan Mohan
- Madras Diabetes Research Foundation, Chennai, India; Dr. Mohan's Diabetes Specialties Centre, Chennai, India.
| |
Collapse
|
10
|
Nitte CM, Dobelke F, König J, Konrad M, Becker K, Kamp-Becker I, Weber S. Review of neurodevelopmental disorders in patients with HNF1B gene variations. Front Pediatr 2023; 11:1149875. [PMID: 36969268 PMCID: PMC10034397 DOI: 10.3389/fped.2023.1149875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023] Open
Abstract
This review investigates the association between neurodevelopmental disorders (NDD) and variations of the gene HNF1B. Heterozygous intragenetic mutations or heterozygous gene deletions (17q12 microdeletion syndrome) of HNF1B are the cause of a multi-system developmental disorder, termed renal cysts and diabetes syndrome (RCAD). Several studies suggest that in general, patients with genetic variation of HNF1B have an elevated risk for additional neurodevelopmental disorders, especially autism spectrum disorder (ASD) but a comprehensive assessment is yet missing. This review provides an overview including all available studies of patients with HNF1B mutation or deletion with comorbid NDD with respect to the prevalence of NDDs and in how they differ between patients with an intragenic mutation or 17q12 microdeletion. A total of 31 studies was identified, comprising 695 patients with variations in HNF1B, (17q12 microdeletion N = 416, mutation N = 279). Main results include that NDDs are present in both groups (17q12 microdeletion 25.2% vs. mutation 6.8%, respectively) but that patients with 17q12 microdeletions presented more frequently with any NDDs and especially with learning difficulties compared to patients with a mutation of HNF1B. The observed prevalence of NDDs in patients with HNF1B variations seems to be higher than in the general population, but the validity of the estimated prevalence must be deemed insufficient. This review shows that systematical research of NDDs in patients with HNF1B mutations or deletions is lacking. Further studies regarding neuropsychological characteristics of both groups are needed. NDDs might be a concomitant of HFN1B-related disease and should be considered in clinical routine and scientific reports.
Collapse
Affiliation(s)
- Clara Marie Nitte
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University, Marburg, Germany
- Correspondence: Clara Nittel
| | - Frederike Dobelke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University, Marburg, Germany
| | - Jens König
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Katja Becker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University, Marburg, Germany
| | - Inge Kamp-Becker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University, Marburg, Germany
| | - Stefanie Weber
- Department of Pediatric and Adolescent Medicine, Philipps University, Marburg, Germany
| | | |
Collapse
|
11
|
Rieger M, Moutton S, Verheyen S, Steindl K, Popp B, Leheup B, Bonnet C, Oneda B, Rauch A, Reis A, Krumbiegel M, Hüffmeier U. Microdeletions at 19p13.11p12 in five individuals with neurodevelopmental delay. Eur J Med Genet 2023; 66:104669. [PMID: 36379434 DOI: 10.1016/j.ejmg.2022.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
Only few copy number variants at chromosome 19p13.11 have been reported, thus associated clinical information is scarce. Proximal to these copy number losses, we now identified deletions in five unrelated individuals with neurodevelopmental disorders. They presented with psychomotor delay as well as behavioral and sleeping disorders, while complex cardiovascular, skeletal, and various other malformations were more variable. Dysmorphic features were rather unspecific and not considered as a recognizable gestalt. Neither of the analyzed parents carried their offsprings' deletions, indicating de novo occurrence. The deletion sizes ranged between 0.7 and 5.2 Mb, were located between 18 and 24 megabases from the telomere, and contained a variable number of protein-coding genes (n = 25-68). Although not all microdeletions shared a common region, the smallest common overlap of some of the deletions provided interesting insights in the chromosomal region 19p13.11p12. Diligent literature review using OMIM and Pubmed did not identify a satisfying candidate gene for neurodevelopmental disorders. In the literature, a de novo in-frame deletion in MAU2 was considered pathogenic in an individual with Cornelia de Lange syndrome. Therefore, the clinical differential diagnosis of this latter syndrome in one individual and the encompassment of MAU2 in three individuals' deletions suggest clinical and genetic overlap with this specific syndrome. Three of the four here reported individuals with deletion encompassing GDF1 had different congenital heart defects, suggesting that this gene's haploinsufficiency might contribute to the cardiovascular phenotype, however, with reduced penetrance. Our findings indicate an association of microdeletions at 19p13.11/ 19p13.11p12 with neurodevelopmental disorders, variable symptoms, and malformations, and delineate the phenotypic spectrum of deletions within this genomic region.
Collapse
Affiliation(s)
- Melissa Rieger
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Institute of Human Genetics, 91054 Erlangen, Germany
| | | | - Sarah Verheyen
- Institute of Human Genetics, Diagnostic and Research Center for MolecularBioMedicine, Medical University of Graz, Austria
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Hessische Straße 4A, 10115 Berlin, Germany
| | - Bruno Leheup
- Service de génétique médicale, CHU de Nancy, Nancy, France
| | - Céline Bonnet
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland
| | - André Reis
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Institute of Human Genetics, 91054 Erlangen, Germany
| | - Mandy Krumbiegel
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Institute of Human Genetics, 91054 Erlangen, Germany
| | - Ulrike Hüffmeier
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Institute of Human Genetics, 91054 Erlangen, Germany.
| |
Collapse
|
12
|
Molina LM, Salgado CM, Reyes-Múgica M. Potter Deformation Sequence Caused by 17q12 Deletion: A Lethal Constellation. Pediatr Dev Pathol 2022; 26:144-148. [PMID: 36513606 DOI: 10.1177/10935266221139341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
17q12 deletion syndrome causes developmental abnormalities of the kidneys, pancreas, genital tract, and neurodevelopment, and it has a wide range of phenotypes ranging from fetal demise to normal adulthood with minimal renal impairment. Here we describe a rare case of 17q12 deletion diagnosed prenatally, complicated by anhydramnios and Potter sequence. The baby was born but necessitated life-saving interventions due to pulmonary and renal insufficiency and ultimately succumbed to multi-organ failure. We present full autopsy results describing findings linked to 17q12 deletion, including severe bilateral multicystic renal dysplasia, pancreatic hypoplasia, and cysts adjacent to the Fallopian tubes. We also describe pulmonary hypoplasia and Potter facies as consequences of anhydramnios. We correlate these findings to our current understanding of molecular signals altered by 17q12 deletion, notably affecting HNF1B and LHX1 genes, which are known to mediate renal and genitourinary tract development.
Collapse
Affiliation(s)
- Laura M Molina
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia M Salgado
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Miguel Reyes-Múgica
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Muacevic A, Adler JR, Almaa ZA, Busehail MY, Alherz ZA. 17q12 Microdeletion Syndrome as a Rare Cause of Elevated Liver Enzymes: Case Report and Literature Review. Cureus 2022; 14:e32233. [PMID: 36620780 PMCID: PMC9812734 DOI: 10.7759/cureus.32233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
17q12 deletion syndrome is a rare autosomal dominant inherited condition. It results from de novo mutation and can occur without a family history. Hepatocyte nuclear factor-1 beta (HNF1B) and LIM homeobox 1 (LXH1) genes are the most common genes to be deleted in this syndrome. It has unique clinical characteristics involving multiple systems in the body. The most common presentations are usually renal involvement and maturity-onset diabetes of the young type 5 (MODY5). Genetic study is the golden tool to diagnose patients with this syndrome. Our case presents the unique clinical features of 17q12 deletion syndrome along with a literature review.
Collapse
|
14
|
Cannon S, Clissold R, Sukcharoen K, Tuke M, Hawkes G, Beaumont RN, Wood AR, Gilchrist M, Hattersley AT, Oram RA, Patel K, Wright C, Weedon MN. Recurrent 17q12 microduplications contribute to renal disease but not diabetes. J Med Genet 2022; 60:491-497. [PMID: 36109160 PMCID: PMC10176419 DOI: 10.1136/jmg-2022-108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND 17q12 microdeletion and microduplication syndromes present as overlapping, multisystem disorders. We assessed the disease phenotypes of individuals with 17q12 CNV in a population-based cohort. METHODS We investigated 17q12 CNV using microarray data from 450 993 individuals in the UK Biobank and calculated disease status associations for diabetes, liver and renal function, neurological and psychiatric traits. RESULTS We identified 11 17q12 microdeletions and 106 microduplications. Microdeletions were strongly associated with diabetes (p=2×10-7) but microduplications were not. Estimated glomerular filtration rate (eGFR mL/min/1.73 m2) was consistently lower in individuals with microdeletions (p=3×10-12) and microduplications (p=6×10-25). Similarly, eGFR <60, including end-stage renal disease, was associated with microdeletions (p=2×10-9, p<0.003) and microduplications (p=1×10-9, p=0.009), respectively, highlighting sometimes substantially reduced renal function in each. Microduplications were associated with decreased fluid intelligence (p=3×10-4). SNP association analysis in the 17q12 region implicated changes to HNF1B as causing decreased eGFR (NC_000017.11:g.37741642T>G, rs12601991, p=4×10-21) and diabetes (NC_000017.11:g.37741165C>T, rs7501939, p=6×10-17). A second locus within the region was also associated with fluid intelligence (NC_000017.11:g.36593168T>C, rs1005552, p=6×10-9) and decreased eGFR (NC_000017.11:g.36558947T>C, rs12150665, p=4×10-15). CONCLUSION We demonstrate 17q12 microdeletions but not microduplications are associated with diabetes in a population-based cohort, likely caused by HNF1B haploinsufficiency. We show that both 17q12 microdeletions and microduplications are associated with renal disease, and multiple genes within the region likely contribute to renal and neurocognitive phenotypes.
Collapse
Affiliation(s)
- Stuart Cannon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Rhian Clissold
- Exeter Kidney Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Kittiya Sukcharoen
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Marcus Tuke
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Gareth Hawkes
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Robin N Beaumont
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew R Wood
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Mark Gilchrist
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Caroline Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
15
|
Phenotypic Variability of 17q12 Microdeletion Syndrome – Three Cases and Review of Literature. Balkan J Med Genet 2022; 24:71-82. [PMID: 36249519 PMCID: PMC9524179 DOI: 10.2478/bjmg-2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Chromosome 17q12 microdeletion syndrome is a contiguous gene deletion syndrome caused by an 1–2 Mb loss, characterized by multicystic dysplastic kidneys or other urinary system anomalies starting in utero, including autism or maturity-onset diabetes of the young in its postnatal phenotype. Here, we report on three cases (two prenatal and one postnatal) with distinct and novel clinical presentations as compared with a large number of reviewed patients, thus emphasizing the phenotypic variability of this syndrome and the consequent difficulties in genetic counselling. Prenatal hyperechogenic multicystic kidneys, as well as other urinary tract anomalies, should be considered a marker, therefore indicating the necessity of comprehensive genetic testing, and autism should also be acknowledged as a possible clinical presentation, postnatally.
Collapse
|
16
|
Cai M, Lin M, Guo N, Fu M, Xu L, Lin N, Huang H. Prenatal ultrasound phenotypic and genetic etiology of the 17q12 microduplication syndrome. Front Pediatr 2022; 10:910497. [PMID: 36034547 PMCID: PMC9399630 DOI: 10.3389/fped.2022.910497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Several studies have reported on the clinical phenotype of the 17q12 microduplication syndrome, a rare autosomal dominant genetic disorder, in children and adults, but few have reported on its prenatal diagnosis. This study analyzed the prenatal ultrasound phenotypes of the 17q12 microduplication syndrome to improve the understanding, diagnosis, and monitoring of this disease in fetuses. METHODS A retrospective analysis of 8,200 pregnant women who had received an invasive antenatal diagnosis at tertiary referral hospitals between January 2016 and August 2021 was performed. Amniotic fluid or cord blood was sampled from the pregnant women for karyotyping and chromosome microarray analysis (CMA). RESULTS The CMA revealed microduplication in the 17q12 region of the genome in five fetuses, involving fragments of about 1.5-1.9 Mb. Five fetuses with the 17q12 microduplication syndrome had different prenatal ultrasound phenotypes, including duodenal obstruction (two fetuses); mild ventriculomegaly, dysplasia of the septum pellucidum, agenesis of the corpus callosum (one fetus); and a strong echo in the left ventricle only (one fetus). The ultrasound phenotype of one fetus was normal. Among the five fetuses with the 17q12 microduplication syndrome, the parents of three refused CNV segregation analysis, while CNV segregation analysis was performed for the remaining two fetuses to confirm whether the disorder was inherited maternally or paternally, with normal phenotypes. After genetic counseling, the parents of those two fetuses chose to terminate the pregnancy, while the parents of the three unverified fetuses continued the pregnancy, with normal follow-up after birth. CONCLUSION Although prenatal ultrasound phenotypes in fetuses with the 17q12 microduplication syndrome are highly variable, our study has highlighted the distinct association between duodenal obstruction and the 17q12 microduplication syndrome. Understanding the relationship between the pathogenesis of the 17q12 microduplication in prenatal ultrasound phenotypes and its long-term prognosis will contribute to better genetic counseling concerning the 17q12 microduplication syndrome, which is still a challenge.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Nan Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Meimei Fu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Zhou CX, Zhu XY, Zhu YJ, Gu LL, He LL, Liu W, Yang Y, Wu X, Duan HL, Ru T, Li J. Prenatal features of 17q12 microdeletion and microduplication syndromes: A retrospective case series. Taiwan J Obstet Gynecol 2021; 60:232-237. [PMID: 33678321 DOI: 10.1016/j.tjog.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To present the experience on prenatal features of 17q12 microdeletion and microduplication syndromes. MATERIALS AND METHODS Prenatal chromosomal microarray analysis (CMA) were conducted between January 2015 and December 2018 at a single Chinese tertiary medical centre. Information of cases identified with 17q12 microdeletion or microduplication syndromes were retrospectively collected. Foetal ultrasonographic findings were reviewed, and other information about the gestation week at diagnosis, inheritance and pregnancy outcomes were also included. RESULTS Ten pregnancies with 17q12 microdeletion and 4 with 17q12 microduplication were identified. The copy number variation (CNV) sizes were 1.39-1.94 Mb in the deleted cases and 1.42-1.48 Mb in the duplicated cases, respectively. All the duplicated and deleted regions included HNF1B and LHX1 genes. Most individuals with 17q12 deletion presented kidney anomalies (9/10), with renal hyperechogenicity being the most common finding (7/10). Fetuses with 17q12 duplication presented a wide phenotypic spectrum, including "double bubble" sign, structural anomalies of the heart and growth anomalies. CONCLUSIONS Our experience further demonstrated the high correlation between 17q12 microdeletion and renal anomalies especially hyperechogenic kidneys. Structural anomalies of the heart were newly identified phenotypes of 17q12 duplication during prenatal period. Besides, growth anomalies and duodenal atresia might be associated with the duplication.
Collapse
Affiliation(s)
- Chun-Xiang Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xiang-Yu Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yu-Jie Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Lei-Lei Gu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Lin-Lin He
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Ying Yang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xing Wu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Hong-Lei Duan
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Tong Ru
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Jie Li
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|