1
|
Brzeska J, Tercjak A, Sikorska W, Mendrek B, Kowalczuk M, Rutkowska M. Degradability of Polyurethanes and Their Blends with Polylactide, Chitosan and Starch. Polymers (Basel) 2021; 13:polym13081202. [PMID: 33917712 PMCID: PMC8068122 DOI: 10.3390/polym13081202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
One of the methods of making traditional polymers more environmentally friendly is to modify them with natural materials or their biodegradable, synthetic equivalents. It was assumed that blends with polylactide (PLA), polysaccharides: chitosan (Ch) and starch (St) of branched polyurethane (PUR) based on synthetic poly([R,S]-3-hydroxybutyrate) (R,S-PHB) would degrade faster in the processes of hydrolysis and oxidation than pure PUR. For the sake of simplicity in the publication, all three modifiers: commercial PLA, Ch created by chemical modification of chitin and St are called bioadditives. The samples were incubated in a hydrolytic and oxidizing environment for 36 weeks and 11 weeks, respectively. The degradation process was assessed by observation of the chemical structure as well as the change in the mass of the samples, their molecular weight, surface morphology and thermal properties. It was found that the PUR samples with the highest amount of R,S-PHB and the lowest amount of polycaprolactone triol (PCLtriol) were degraded the most. Moreover, blending with St had the greatest impact on the susceptibility to degradation of PUR. However, the rate of weight loss of the samples was low, and after 36 weeks of incubation in the hydrolytic solution, it did not exceed 7% by weight. The weight loss of Ch and PLA blends was even smaller. However, a significant reduction in molecular weight, changes in morphology and changes in thermal properties indicated that the degradation of the samples should occur quickly after this time. Therefore, when using these polyurethanes and their blends, it should be taken into account that they should decompose slowly in their initial life. In summary, this process can be modified by changing the amount of R,S-PHB, the degree of cross-linking, and the type and amount of second blend component added (bioadditives).
Collapse
Affiliation(s)
- Joanna Brzeska
- Department of Industrial Product Quality and Chemistry, Gdynia Maritime University, 83 Morska Street, 81-225 Gdynia, Poland;
- Correspondence:
| | - Agnieszka Tercjak
- Group ‘Materials+Technologies’ (GMT), Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland; (W.S.); (B.M.); (M.K.)
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland; (W.S.); (B.M.); (M.K.)
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland; (W.S.); (B.M.); (M.K.)
| | - Maria Rutkowska
- Department of Industrial Product Quality and Chemistry, Gdynia Maritime University, 83 Morska Street, 81-225 Gdynia, Poland;
| |
Collapse
|
2
|
Li R, Lee JH, Wang C, Howe Mark L, Park CB. Solubility and diffusivity of CO2 and N2 in TPU and their effects on cell nucleation in batch foaming. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104623] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Bagdadi AV, Safari M, Dubey P, Basnett P, Sofokleous P, Humphrey E, Locke I, Edirisinghe M, Terracciano C, Boccaccini AR, Knowles JC, Harding SE, Roy I. Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. J Tissue Eng Regen Med 2018; 12:e495-e512. [PMID: 27689781 DOI: 10.1002/term.2318] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 11/12/2022]
Abstract
Cardiac tissue engineering (CTE) is currently a prime focus of research because of an enormous clinical need. In the present work, a novel functional material, poly(3-hydroxyoctanoate), P(3HO), a medium chain-length polyhydroxyalkanoate (PHA), produced using bacterial fermentation, was studied as a new potential material for CTE. Engineered constructs with improved mechanical properties, crucial for supporting the organ during new tissue regeneration, and enhanced surface topography, to allow efficient cell adhesion and proliferation, were fabricated. Results showed that the mechanical properties of the final patches were close to that of cardiac muscle. Biocompatibility of neat P(3HO) patches, assessed using neonatal ventricular rat myocytes (NVRM), showed that the polymer was as good as collagen in terms of cell viability, proliferation and adhesion. Enhanced cell adhesion and proliferation properties were observed when porous and fibrous structures were incorporated into the patches. In addition, no deleterious effect was observed on adult cardiomyocyte contraction when cardiomyocytes were seeded on the P(3HO) patches. Hence, P(3HO)-based multifunctional cardiac patches are promising constructs for efficient CTE. This work will have a positive impact on the development of P(3HO) and other PHAs as a novel new family of biodegradable functional materials with huge potential in a range of different biomedical applications, particularly CTE, leading to further interest and exploitation of these materials. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea V Bagdadi
- Applied Biotechnology Research Group Faculty of Science and Technology, University of Westminster, London, UK
| | - Maryam Safari
- Applied Biotechnology Research Group Faculty of Science and Technology, University of Westminster, London, UK
| | - Prachi Dubey
- Applied Biotechnology Research Group Faculty of Science and Technology, University of Westminster, London, UK
| | - Pooja Basnett
- Applied Biotechnology Research Group Faculty of Science and Technology, University of Westminster, London, UK
| | | | | | - Ian Locke
- Applied Biotechnology Research Group Faculty of Science and Technology, University of Westminster, London, UK
| | | | | | - Aldo R Boccaccini
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jonathan C Knowles
- Department of Biomaterials and Tissue engineering, Eastman Dental Institute UCL, London, UK.,Department of Nanobiomedical Science and BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Republic of Korea
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, UK
| | - Ipsita Roy
- Applied Biotechnology Research Group Faculty of Science and Technology, University of Westminster, London, UK
| |
Collapse
|