1
|
Xu C, Yu J, Li B, Jia P, Lu C, Fan Y, Chu F. Designing mechanically robust one-component nanocomposites via hyperbranched cellulose nanofibril grafted vegetable oil polymers. Carbohydr Polym 2025; 352:123131. [PMID: 39843042 DOI: 10.1016/j.carbpol.2024.123131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/24/2025]
Abstract
Achieving effective interfacial compatibility between hydrophilic cellulose nanofibrils (CNFs) and hydrophobic vegetable oil polymers (VOPs) remained a significant challenge. To address this issue, we developed a one-component nanocomposite (OCN) based on hyperbranched CNF-grafted VOPs. Rigid precursor initiator poly (vinylbenzyl chloride) (PVBC) was first grafted onto the CNF surface via phase-transfer catalysis, forming a branched macroinitiator (CNF-g-PVBC) with chlorine contents ranging from 4.4 to 9.1 wt%. Subsequently, vegetable oil based monomers (lauryl methacrylate, LMA) were directly grafted onto CNF-g-PVBC through sacrificing initiator-free surface-initiated atom transfer radical polymerization (SI-ATRP). Finally, a hyperbranched CNF-based one-component nanocomposite (OCN-CVOP) was successfully prepared. Nanoscale infrared spectroscopy and microscopy confirmed the highly uniform morphology of the OCN-CVOP films, highlighting the superior dispersion of CNFs within the VOP matrix. Notably, compared to pure VOPs, OCN-CVOP exhibited remarkably low glass transition temperature (∼-15 °C) and reduced viscosity, which was attributed to the hyperbranched architecture. Even at LMA contents as high as ∼70 wt%, OCN-CVOP demonstrated excellent mechanical performance, achieving a tensile strength of 3.6 ± 0.2 MPa and a toughness of 21.5 ± 2.9 MJ/m3. This innovative design successfully addressed the mechanical limitations of conventional VOPs, offering a sustainable approach for developing environmentally friendly, high-performance VOP materials with diverse application potential.
Collapse
Affiliation(s)
- Chaoqun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Bowen Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing, China.
| | - Chuanwei Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Fuxiang Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing, China.
| |
Collapse
|
2
|
Hybrid Films from Blends of Castor Oil and Polycaprolactone Waterborne Polyurethanes. Polymers (Basel) 2022; 14:polym14204303. [PMID: 36297881 PMCID: PMC9612392 DOI: 10.3390/polym14204303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Waterborne polyurethanes (WBPUs) with relatively high biobased content (up to 43.7%) were synthesized, aiming at their use as coatings for metals and woods. The study was performed on self-standing films obtained from anionic polyurethane water dispersions (PUDs). The initially targeted PUD was prepared from castor oil (CO), while tartaric acid (TA), a byproduct of wine production, was utilized as the internal anionic emulsifier. Although the films were cohesive and transparent, they were fragile, and thus blending the CO-TA PUD with other WBPUs was the chosen strategy to obtain films with improved handling characteristics. Two different WBPUs based on polycaprolactone diol (PCL), a biodegradable macrodiol, were prepared with dimethylolpropionic acid (DMPA) and tartaric acid (TA) as synthetic and biobased internal emulsifiers, respectively. The use of blends with PCL-TA and PCL-DMPA allowed for tailoring the moduli of the samples and also varying their transparency and haze. The characterization of the neat and hybrid films was performed by colorimetry, FTIR-ATR, XRD, DMA, TGA, solubility and swelling in toluene, and water contact angle. In general, the addition of PCL-based films increases haze; reduces the storage modulus, G’, which at room temperature can vary in the range of 100 to 350 MPa; and reduces thermal degradation at high temperatures. The results are related to the high gel content of the CO-TA film (93.5 wt.%), which contributes to the cohesion of the blend films and to the crystallization of the PCL segments in the samples. The highest crystallinity values corresponded to the neat PCL-based films (32.3% and 26.9%, for PCL-DMPA and PCL-TA, respectively). The strategy of mixing dispersions is simpler than preparing a new synthesis for each new requirement and opens possibilities for new alternatives in the future.
Collapse
|
3
|
Amri MR, Md Yasin F, Abdullah LC, Al-Edrus SSO, Mohamad SF. Ternary Nanocomposite System Composing of Graphene Nanoplatelet, Cellulose Nanofiber and Jatropha Oil Based Waterborne Polyurethane: Characterizations, Mechanical, Thermal Properties and Conductivity. Polymers (Basel) 2021; 13:polym13213740. [PMID: 34771296 PMCID: PMC8587327 DOI: 10.3390/polym13213740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
This work aims to evaluate the performance of graphene nanoplatelet (GNP) as conductive filler with the presence of 0.5 wt.% cellulose nanofiber (CNF) on the physical, mechanical, conductivity and thermal properties of jatropha oil based waterborne polyurethane. Polyurethane was made from crude jatropha oil using an epoxidation and ring-opening process. 0.5, 1.0, 1.5, 2.0 wt.% GNP and 0.5 wt.% CNF were incorporated using casting method to enhance film performance. Mechanical properties were studied following standard method as stated in ASTM D638-03 Type V. Thermal stability of the nanocomposite system was studied using thermal gravimetric analysis (TGA). Filler interaction and chemical crosslinking was monitored using Fourier-transform infrared spectroscopy (FTIR) and film morphology were observed with field emission scanning electron microscopy (FESEM). Water uptake analysis, water contact angle and conductivity tests are also carried out. The results showed that when the GNP was incorporated at fixed CNF content, it was found to enhance the nanocomposite film, its mechanical, thermal and water behavior properties as supported by morphology and water uptake. Nanocomposite film with 0.5 wt.% GNP shows the highest improvement in term of tensile strength, Young’s modulus, thermal degradation and water behavior. As the GNP loading increases, water uptake of the nanocomposite film was found relatively small (<1%). Contact angle test also indicates that the film is hydrophobic with addition of GNP. The conductivity properties of the nanocomposite film were not enhanced due to electrostatic repulsion force between GNP sheet and hard segment of WBPU. Overall, with addition of GNP, mechanical and thermal properties was greatly enhanced. However, conductivity value was not enhanced as expected due to electrostatic repulsion force. Therefore, ternary nanocomposite system is a suitable candidate for coating application.
Collapse
Affiliation(s)
- Mohamad Ridzuan Amri
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Faizah Md Yasin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Advance Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (F.M.Y.); (L.C.A.); (S.S.O.A.-E.)
| | - Luqman Chuah Abdullah
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (F.M.Y.); (L.C.A.); (S.S.O.A.-E.)
| | - Syeed Saifulazry Osman Al-Edrus
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (F.M.Y.); (L.C.A.); (S.S.O.A.-E.)
| | - Siti Fatahiyah Mohamad
- Radiation Processing and Technology Division, Malaysia Nuclear Agency, Bangi 43000, Selangor, Malaysia;
| |
Collapse
|
4
|
Benavides S, Armanasco F, Cerrutti P, Chiacchiarelli LM. Nanostructured rigid polyurethane foams with improved specific thermo‐mechanical properties using bacterial nanocellulose as a hard segment. J Appl Polym Sci 2021. [DOI: 10.1002/app.50520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sofía Benavides
- Instituto de Tecnología de Polímeros y Nanotecnología (ITPN), CONICET‐UBA Buenos Aires Argentina
| | - Franco Armanasco
- Instituto de Tecnología de Polímeros y Nanotecnología (ITPN), CONICET‐UBA Buenos Aires Argentina
- Departamento de Ingeniería Mecánica Instituto Tecnológico de Buenos Aires Buenos Aires Argentina
| | - Patricia Cerrutti
- Departamento de Ingeniería Química, Facultad de Ingeniería UBA Buenos Aires Argentina
| | - Leonel Matías Chiacchiarelli
- Instituto de Tecnología de Polímeros y Nanotecnología (ITPN), CONICET‐UBA Buenos Aires Argentina
- Departamento de Ingeniería Mecánica Instituto Tecnológico de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
5
|
Mamat Razali NA, Ismail MF, Abdul Aziz F. Characterization of nanocellulose from
Indica
rice straw as reinforcing agent in epoxy‐based nanocomposites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nur Amira Mamat Razali
- Department of Physics, Centre For Defence Foundation Studies National Defence University of Malaysia Kuala Lumpur Malaysia
| | - Muhamad Fareez Ismail
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry MAHSA University Selangor Malaysia
| | - Fauziah Abdul Aziz
- Department of Physics, Centre For Defence Foundation Studies National Defence University of Malaysia Kuala Lumpur Malaysia
| |
Collapse
|
6
|
Effect of Cellulose Nanofibrils on the Properties of Jatropha Oil-Based Waterborne Polyurethane Nanocomposite Film. Polymers (Basel) 2021; 13:polym13091460. [PMID: 33946517 PMCID: PMC8124478 DOI: 10.3390/polym13091460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 01/31/2023] Open
Abstract
The objective of this work was to study the influence of cellulose nanofibrils (CNF) on the physical, mechanical, and thermal properties of Jatropha oil-based waterborne polyurethane (WBPU) nanocomposite films. The polyol to produce polyurethane was synthesized from crude Jatropha oil through epoxidation and ring-opening method. The chain extender, 1,6-hexanediol, was used to improve film elasticity by 0.1, 0.25, and 0.5 wt.% of CNF loading was incorporated to enhance film performance. Mechanical performance was studied using a universal test machine as specified in ASTM D638-03 Type V and was achieved by 0.18 MPa at 0.5 wt.% of CNF. Thermal gravimetric analysis (TGA) was performed to measure the temperature of degradation and the chemical crosslinking and film morphology were studied using Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The results showed that when the CNF was incorporated, it was found to enhance the nanocomposite film, in particular its mechanical and thermal properties supported by morphology. Nanocomposite film with 0.5 wt.% of CNF showed the highest improvement in terms of tensile strength, Young’s modulus, and thermal degradation. Although the contact angle decreases as the CNF content increases, the effect on the water absorption of the film was found to be relatively small (<3.5%). The difference between the neat WPBU and the highest CNF loading film was not more than 1%, even after 5 days of being immersed in water.
Collapse
|
7
|
The role of rheological premonitory of hydrogels based on cellulose nanofibers and polymethylsilsesquioxane on the physical properties of corresponding aerogels. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Dai Z, Jiang P, Lou W, Zhang P, Bao Y, Gao X, Xia J, Haryono A. Preparation of degradable vegetable oil-based waterborne polyurethane with tunable mechanical and thermal properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109994] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
|