1
|
Hashem MS, Magar HS, Fahim AM, Sobh RA. Antioxidant-rich brilliant polymeric nanocomposites for quick and efficient non-enzymatic hydrogen peroxide sensor. RSC Adv 2024; 14:13142-13156. [PMID: 38655478 PMCID: PMC11036121 DOI: 10.1039/d4ra01768d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
In our current research, a new type of functional nanocomposites known as poly(methyl methacrylate/N,N-dimethyl aminoethylmethacrylate/(E)-2-cyano-N-cyclohexyl-3 (dimethylamino) acrylamide) [poly(MMA/DMAEMA/CHAA)] has been developed. These nanocomposites were created using microemulsion polymerization in conjunction with synthesized titanium dioxide (TiO2), and vanadium pentoxide (V2O5) nanoparticles. To understand the physio-chemical characteristics of the poly(MMA/DMAEMA/CHAA) and the metal oxide nanoparticles (MOs) integrated within them, various analytical techniques were employed. These techniques included Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and electrical approaches such as cyclic voltammetry (CV) and electrical impedance spectra (EIS). Based on the TEM results, nanospheres with a well-defined structure were developed for both the pure polymer and its composite with sizes ranging from 45 to 75 nm. All the TiO2 and V2O5-based nanocomposites showed significantly enhanced electrical attributes, with capacitance values surpassing those of the poly(MMA/DMAEMA/CHAA) nanosphere assemblies by a considerable margin. As a result, both direct electron transfer and direct hydrogen peroxide identification were evaluated for the nanocomposites. The amperometry results demonstrated a lower detection limit of 0.0085 μM and a rapid linear sensitivity in the range of 1 to 800 μM. The greatly improved electrolytic qualities of these nanocomposites make them suitable for various applications in fields such as battery storage, sensors, and biosensors.
Collapse
Affiliation(s)
- M S Hashem
- Polymers and Pigments Department, National Research Centre Dokki P.O. Box 12622 Giza Egypt
| | - Hend S Magar
- Applied Organic Chemistry Department, National Research Centre Dokki P.O. Box 12622 Giza Egypt
| | - Asmaa M Fahim
- Department of Green Chemistry, National Research Centre Dokki P.O. Box 12622 Giza Egypt
| | - Rokaya A Sobh
- Polymers and Pigments Department, National Research Centre Dokki P.O. Box 12622 Giza Egypt
| |
Collapse
|
2
|
Komaba K, Goto H. A polyaniline/shark skin composite and its conductivity based on polaron hopping. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1867172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Kyoka Komaba
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiromasa Goto
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Halay E, Bozkurt S, Capan R, Erdogan M, Unal R, Acikbas Y. Calix[4]arene-triazine conjugate intermediate: optical properties and gas sensing responses against aromatic hydrocarbons in Langmuir–Blodgett films. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04213-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Noormohammad A, Molla‐Abbasi P. An analytical investigation on the effect of porous conductive cellulose acetate composite morphology on the detection of organic compounds. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Asma Noormohammad
- Department of Chemical Engineering, Faculty of EngineeringUniversity of Isfahan Isfahan Islamic Republic of Iran
| | - Payam Molla‐Abbasi
- Department of Chemical Engineering, Faculty of EngineeringUniversity of Isfahan Isfahan Islamic Republic of Iran
| |
Collapse
|
5
|
Chen J, Zhu Y, Huang J, Zhang J, Pan D, Zhou J, Ryu JE, Umar A, Guo Z. Advances in Responsively Conductive Polymer Composites and Sensing Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1734818] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jianwen Chen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Yuhang District, Hangzhou, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yutian Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Yuhang District, Hangzhou, China
| | - Jinrui Huang
- Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, Jiangsu Province, China
| | - Jiaoxia Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Duo Pan
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
| | - Juying Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Jong E. Ryu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Kingdom of Saudi Arabia
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|