1
|
Ugrinovic V, Markovic M, Bozic B, Panic V, Veljovic D. Physically Crosslinked Poly(methacrylic acid)/Gelatin Hydrogels with Excellent Fatigue Resistance and Shape Memory Properties. Gels 2024; 10:444. [PMID: 39057467 PMCID: PMC11276459 DOI: 10.3390/gels10070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels endure various dynamic stresses, demanding robust mechanical properties. Despite significant advancements, matching hydrogels' strength to biological tissues and plastics is often challenging without applying potentially harmful crosslinkers. Using hydrogen bonds as sacrificial bonds offers a promising strategy to produce tough, versatile hydrogels for biomedical and industrial applications. Poly(methacrylic acid) (PMA)/gelatin hydrogels were synthesized by thermally induced free-radical polymerization and crosslinked only by physical bonds, without adding any chemical crosslinker. The addition of gelatin increased the formation of hydrophobic domains in the structure of the hydrogels, which acted as permanent crosslinking points. The increase in PMA and gelatin contents generally led to a lower equilibrium water content (WC), higher thermal stability and better mechanical properties. The values of tensile strength and toughness reached up to 1.44 ± 0.17 MPa and 4.91 ± 0.51 MJ m-3, respectively, while the compressive modulus and strength reached up to 0.75 ± 0.06 MPa and 24.81 ± 5.85 MPa, respectively, with the WC being higher than 50 wt.%. The obtained values for compressive mechanical properties are comparable with super-strong hydrogels reported in the literature. In addition, hydrogels exhibited excellent fatigue resistance and biocompatibility, as well as great shape memory properties, which make them prominent candidates for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Vukasin Ugrinovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (V.P.)
| | - Maja Markovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (V.P.)
| | - Bojan Bozic
- Institute of Physiology and Biochemistry “Ivan Đaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Panic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (M.M.); (V.P.)
| | - Djordje Veljovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Zhang S, Liu J, Feng F, Jia Y, Xu F, Wei Z, Zhang M. Rational design of viscoelastic hydrogels for periodontal ligament remodeling and repair. Acta Biomater 2024; 174:69-90. [PMID: 38101557 DOI: 10.1016/j.actbio.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The periodontal ligament (PDL) is a distinctive yet critical connective tissue vital for maintaining the integrity and functionality of tooth-supporting structures. However, PDL repair poses significant challenges due to the complexity of its mechanical microenvironment encompassing hard-soft-hard tissues, with the viscoelastic properties of the PDL being of particular interest. This review delves into the significant role of viscoelastic hydrogels in PDL regeneration, underscoring their utility in simulating biomimetic three-dimensional microenvironments. We review the intricate relationship between PDL and viscoelastic mechanical properties, emphasizing the role of tissue viscoelasticity in maintaining mechanical functionality. Moreover, we summarize the techniques for characterizing PDL's viscoelastic behavior. From a chemical bonding perspective, we explore various crosslinking methods and characteristics of viscoelastic hydrogels, along with engineering strategies to construct viscoelastic cell microenvironments. We present a detailed analysis of the influence of the viscoelastic microenvironment on cellular mechanobiological behavior and fate. Furthermore, we review the applications of diverse viscoelastic hydrogels in PDL repair and address current challenges in the field of viscoelastic tissue repair. Lastly, we propose future directions for the development of innovative hydrogels that will facilitate not only PDL but also systemic ligament tissue repair. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Songbai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingyi Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Min Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
3
|
Ugrinovic V, Milutinovic M, Bozic B, Petrovic R, Janackovic D, Panic V, Veljovic D. Poly(methacrylic acid)/gelatin interpenetrating network hydrogels reinforced by nano-structured hydroxyapatite particles—improved drug delivery systems. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2164281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vukasin Ugrinovic
- Innovation Center of Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Milica Milutinovic
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Bojan Bozic
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Rada Petrovic
- Department of Inorganic Chemical Technology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Djordje Janackovic
- Department of Inorganic Chemical Technology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Panic
- Innovation Center of Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Djordje Veljovic
- Department of Inorganic Chemical Technology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Cotner SN, Shams Es‐haghi S. Unimpaired highly extensible tough chemically crosslinked hydrogel after experiencing freeze/thaw and boiling processes. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stella N. Cotner
- Advanced Structures and Composites Center The University of Maine Orono Maine USA
| | - Siamak Shams Es‐haghi
- Advanced Structures and Composites Center The University of Maine Orono Maine USA
- Department of Chemical and Biomedical Engineering The University of Maine Orono Maine USA
| |
Collapse
|
5
|
Ye W, Guo M, Li Q, Wang L, Zhao C, Xiang D, Lai J, Li H, Li Z, Wu Y. High strength, anti‐freezing, and conductive poly(vinyl alcohol)/urea ionic hydrogels as soft sensor. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenhao Ye
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Meiling Guo
- The Collaborative Innovation Center of Functional Materials and Devices, School of Materials and Environmental Engineering Chengdu Technological University Chengdu China
| | - Qing Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Li Wang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Chuanxia Zhao
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Dong Xiang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Jingjuan Lai
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Hui Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Zhenyu Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Yuanpeng Wu
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| |
Collapse
|
6
|
Sánchez-Cid P, Jiménez-Rosado M, Romero A, Pérez-Puyana V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14153023. [PMID: 35893984 PMCID: PMC9370620 DOI: 10.3390/polym14153023] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, there are still numerous challenges for well-known biomedical applications, such as tissue engineering (TE), wound healing and controlled drug delivery, which must be faced and solved. Hydrogels have been proposed as excellent candidates for these applications, as they have promising properties for the mentioned applications, including biocompatibility, biodegradability, great absorption capacity and tunable mechanical properties. However, depending on the material or the manufacturing method, the resulting hydrogel may not be up to the specific task for which it is designed, thus there are different approaches proposed to enhance hydrogel performance for the requirements of the application in question. The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popular hydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogels. In addition, the secondary objective of this review was to briefly discuss other novel applications of hydrogels that have been proposed in the past few years which have drawn a lot of attention.
Collapse
Affiliation(s)
| | | | - Alberto Romero
- Correspondence: (P.S.-C.); (A.R.); Tel.: +34-954557179 (A.R.)
| | | |
Collapse
|
7
|
Bercea M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers (Basel) 2022; 14:polym14122365. [PMID: 35745941 PMCID: PMC9229923 DOI: 10.3390/polym14122365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels, as interconnected networks (polymer mesh; physically, chemically, or dynamic crosslinked networks) incorporating a high amount of water, present structural characteristics similar to soft natural tissue. They enable the diffusion of different molecules (ions, drugs, and grow factors) and have the ability to take over the action of external factors. Their nature provides a wide variety of raw materials and inspiration for functional soft matter obtained by complex mechanisms and hierarchical self-assembly. Over the last decade, many studies focused on developing innovative and high-performance materials, with new or improved functions, by mimicking biological structures at different length scales. Hydrogels with natural or synthetic origin can be engineered as bulk materials, micro- or nanoparticles, patches, membranes, supramolecular pathways, bio-inks, etc. The specific features of hydrogels make them suitable for a wide variety of applications, including tissue engineering scaffolds (repair/regeneration), wound healing, drug delivery carriers, bio-inks, soft robotics, sensors, actuators, catalysis, food safety, and hygiene products. This review is focused on recent advances in the field of bioinspired hydrogels that can serve as platforms for life-science applications. A brief outlook on the actual trends and future directions is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|