1
|
Salnikov E, Adélaïde M, Ramos-Martín F, Saad A, Schauer J, Cremanns M, Rima M, Aisenbrey C, Oueslati S, Naas T, Pfennigwerth N, Gatermann S, Sarazin C, Bechinger B, D'Amelio N. Cathelicidin-BF: A Potent Antimicrobial Peptide Leveraging Charge and Phospholipid Recruitment against Multidrug-Resistant Clinical Bacterial Isolates. J Am Chem Soc 2025; 147:11199-11215. [PMID: 40126422 DOI: 10.1021/jacs.4c17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cathelicidin-BF (CatBF) is a LL-37 homologous antimicrobial peptide (AMP) isolated from Bungarus fasciatus with an exceptional portfolio of antimicrobial, antiviral, antifungal, and anticancer activities. Contrary to many AMPs, it showed a good pharmacological profile with a half-life of at least 1 h in serum and efficacy against bacterial infections in mice. To evaluate its potential against resistant nosocomial infections, we assessed its activity against 81 clinically relevant resistant bacterial isolates. CatBF exhibited minimum inhibitory concentrations (MICs) as low as 0.5 μM against carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli. Its wide-ranging activity, unaffected by resistance mechanisms or Gram phenotype, prompted us to investigate its molecular mode of action. NMR spectroscopy, paramagnetic probes, and molecular dynamics (MD) simulations were employed to define its structure, penetration depth, and orientation in various membrane models, including micelles, bicelles, oriented bilayers, and vesicles. We found that CatBF's potent activity relies on its strong charge, allowing membrane neutralization at low peptide/lipid ratios and selective recruitment of charged phospholipids. At higher concentrations, a change in peptide orientation reveals membrane invagination and the formation of transient pores possibly leading to bacterial death. Our findings highlight the potential of CatBF as a model for developing resistance-independent agents to combat multidrug-resistant (MDR) bacterial infections.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, Strasbourg, 67008, France
| | - Morgane Adélaïde
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Ahmad Saad
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, Strasbourg, 67008, France
| | - Jennifer Schauer
- Department of Medical Microbiology, Ruhr-University, Bochum, 44801, Germany
| | - Martina Cremanns
- Department of Medical Microbiology, Ruhr-University, Bochum, 44801, Germany
| | - Mariam Rima
- Team RESIST, INSERM U1184, Université Paris-Saclay, Faculté de Médecine, Bacteriology ward, Hôpital de Bicêtre, 3ème étage, 78 rue du Gal Leclerc, Paris 94270, France
| | - Christopher Aisenbrey
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, Strasbourg, 67008, France
| | - Saoussen Oueslati
- Team RESIST, INSERM U1184, Université Paris-Saclay, Faculté de Médecine, Bacteriology ward, Hôpital de Bicêtre, 3ème étage, 78 rue du Gal Leclerc, Paris 94270, France
| | - Thierry Naas
- Team RESIST, INSERM U1184, Université Paris-Saclay, Faculté de Médecine, Bacteriology ward, Hôpital de Bicêtre, 3ème étage, 78 rue du Gal Leclerc, Paris 94270, France
| | - Niels Pfennigwerth
- Department of Medical Microbiology, Ruhr-University, Bochum, 44801, Germany
| | - Söeren Gatermann
- Department of Medical Microbiology, Ruhr-University, Bochum, 44801, Germany
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Burkhard Bechinger
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, Strasbourg, 67008, France
- Institut Universitaire de France, Paris 75005, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| |
Collapse
|
2
|
Rengifo-Lema MJ, Proaño-Bolaños C, Cuesta S, Meneses L. Computational modelling of the antimicrobial peptides Cruzioseptin-4 extracted from the frog Cruziohyla calcarifer and Pictuseptin-1 extracted from the frog Boana picturata. Sci Rep 2024; 14:4805. [PMID: 38413681 PMCID: PMC10899591 DOI: 10.1038/s41598-024-55171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
A computational study of the peptides Cruzioseptin-4 and Pictuseptin-1, identified in Cruziohyla calcarifer and Boana picturata respectively, has been carried out. The studies on Cruzioseptin-4 show that it is a cationic peptide with a chain of 23 amino acids that possess 52.17% of hydrophobic amino acids and a charge of + 1.2 at pH 7. Similarly, Pictuseptin-1 is a 22 amino acids peptide with a charge of + 3 at pH 7 and 45.45% of hydrophobic amino acids. Furthermore, the predominant secondary structure for both peptides is alpha-helical. The physicochemical properties were predicted using PepCalc and Bio-Synthesis; secondary structures using Jpred4 and PredictProtein; while molecular docking was performed using Autodock Vina. Geometry optimization of the peptides was done using the ONIOM hybrid method with the HF/6-31G basis set implemented in the Gaussian 09 program. Finally, the molecular docking study indicates that the viable mechanism of action for both peptides is through a targeted attack on the cell membrane of pathogens via electrostatic interactions with different membrane components, leading to cell lysis.
Collapse
Affiliation(s)
- María José Rengifo-Lema
- Escuela de Ciencias Químicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Ecuador
| | | | - Sebastián Cuesta
- Escuela de Ciencias Químicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Ecuador
| | - Lorena Meneses
- Escuela de Ciencias Químicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Ecuador.
| |
Collapse
|
3
|
Adélaïde M, Salnikov E, Ramos-Martín F, Aisenbrey C, Sarazin C, Bechinger B, D’Amelio N. The Mechanism of Action of SAAP-148 Antimicrobial Peptide as Studied with NMR and Molecular Dynamics Simulations. Pharmaceutics 2023; 15:pharmaceutics15030761. [PMID: 36986623 PMCID: PMC10051583 DOI: 10.3390/pharmaceutics15030761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Background: SAAP-148 is an antimicrobial peptide derived from LL-37. It exhibits excellent activity against drug-resistant bacteria and biofilms while resisting degradation in physiological conditions. Despite its optimal pharmacological properties, its mechanism of action at the molecular level has not been explored. Methods: The structural properties of SAAP-148 and its interaction with phospholipid membranes mimicking mammalian and bacterial cells were studied using liquid and solid-state NMR spectroscopy as well as molecular dynamics simulations. Results: SAAP-148 is partially structured in solution and stabilizes its helical conformation when interacting with DPC micelles. The orientation of the helix within the micelles was defined by paramagnetic relaxation enhancements and found similar to that obtained using solid-state NMR, where the tilt and pitch angles were determined based on 15N chemical shift in oriented models of bacterial membranes (POPE/POPG). Molecular dynamic simulations revealed that SAAP-148 approaches the bacterial membrane by forming salt bridges between lysine and arginine residues and lipid phosphate groups while interacting minimally with mammalian models containing POPC and cholesterol. Conclusions: SAAP-148 stabilizes its helical fold onto bacterial-like membranes, placing its helix axis almost perpendicular to the surface normal, thus probably acting by a carpet-like mechanism on the bacterial membrane rather than forming well-defined pores.
Collapse
Affiliation(s)
- Morgane Adélaïde
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Evgeniy Salnikov
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (F.R.-M.); (N.D.); Tel.: +33-3-22-82-74-73 (F.R.-M. & N.D.)
| | - Christopher Aisenbrey
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Burkhard Bechinger
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (F.R.-M.); (N.D.); Tel.: +33-3-22-82-74-73 (F.R.-M. & N.D.)
| |
Collapse
|
4
|
Qian S, Zolnierczuk PA. Interaction of a Short Antimicrobial Peptide on Charged Lipid Bilayer: A Case Study on Aurein 1.2 Peptide. BBA ADVANCES 2022; 2:100045. [PMID: 37082600 PMCID: PMC10074906 DOI: 10.1016/j.bbadva.2022.100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Aurein 1.2 (aurein) is a short but active α-helical antimicrobial peptide discovered in Australian tree frogs (Litoria aurea). It shows inhibition on a broad spectrum of bacteria and cancer cells. With well-defined helicity, amphipathicity, and cationic charges, it readily binds to membranes and causes membrane change and disruption. This study provides details on how aurein interacts with charged lipid membranes by using neutron membrane diffraction (NMD) and neutron spin echo (NSE) spectroscopy on complex peptide-membrane systems. NMD provides higher resolution lipid bilayer structures than solution scattering. NMD revealed the peptide is mostly associated in the lipid headgroup region. Even at moderately high concentrations (e.g., peptide:lipid ratio of 1:30), aurein is located at the acyl chain-headgroup region without deep penetration into the hydrophobic acyl chain. However, it does reduce the elasticity of the membrane at that concentration, which was corroborated by the NSE results. Furthermore, NSE shows that aurein first softens the membrane, like many other α-helical peptides at low concentration, but then makes the membrane much more rigid, even without membrane pore formation. Combining our previous studies, the evidence shows that aurein at relatively low concentrations still modifies lipid distribution significantly and can cause membrane thinning and lateral segregation of charged lipids. At the same time, the membrane's mechanical properties are modified with much slower lipid diffusion. This suggests that aurein can attack the microbial membrane without the need to form membrane pores or disintegrate membranes; instead, it promotes the formation of domains at low concentration.
Collapse
Affiliation(s)
- Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
- Corresponding author.
| | - Piotr A. Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| |
Collapse
|
5
|
Booth V. Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 2:621572. [PMID: 35047897 PMCID: PMC8757836 DOI: 10.3389/fmedt.2020.621572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Solid state NMR has been tremendously useful in characterizing the structure and dynamics of model membranes composed of simple lipid mixtures. Model lipid studies employing solid state NMR have included important work revealing how membrane bilayer structure and dynamics are affected by molecules such as antimicrobial peptides (AMPs). However, solid state NMR need not be applied only to model membranes, but can also be used with living, intact cells. NMR of whole cells holds promise for helping resolve some unsolved mysteries about how bacteria interact with AMPs. This mini-review will focus on recent studies using 2H NMR to study how treatment with AMPs affect membranes in intact bacteria.
Collapse
Affiliation(s)
- Valerie Booth
- Department of Biochemistry and Department of Physics and Physical Oceanograpy, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Zhu S, Li W, O'Brien-Simpson N, Separovic F, Sani MA. C-terminus amidation influences biological activity and membrane interaction of maculatin 1.1. Amino Acids 2021; 53:769-777. [PMID: 33891157 DOI: 10.1007/s00726-021-02983-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/16/2021] [Indexed: 11/24/2022]
Abstract
Cationic antimicrobial peptides have been investigated for their potential use in combating infections by targeting the cell membrane of microbes. Their unique chemical structure has been investigated to understand their mode of action and optimize their dose-response by rationale design. One common feature among cationic AMPs is an amidated C-terminus that provides greater stability against in vivo degradation. This chemical modification also likely modulates the interaction with the cell membrane of bacteria yet few studies have been performed comparing the effect of the capping groups. We used maculatin 1.1 (Mac1) to assess the role of the capping groups in modulating the peptide bacterial efficiency, stability and interactions with lipid membranes. Circular dichroism results showed that C-terminus amidation maintains the structural stability of the peptide (α-helix) in contact with micelles. Dye leakage experiments revealed that amidation of the C-terminus resulted in higher membrane disruptive ability while bacteria and cell viability assays revealed that the amidated form displayed higher antibacterial ability and cytotoxicity compared to the acidic form of Mac1. Furthermore, 31P and 2H solid-state NMR showed that C-terminus amidation played a greater role in disturbance of the phospholipid headgroup but had little effect on the lipid tails. This study paves the way to better understand how membrane-active AMPs act in live bacteria.
Collapse
Affiliation(s)
- Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wenyi Li
- Melbourne Dental School and Bio21 Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Neil O'Brien-Simpson
- Melbourne Dental School and Bio21 Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
7
|
Zhu S, Weber DK, Separovic F, Sani MA. Expression and purification of the native C-amidated antimicrobial peptide maculatin 1.1. J Pept Sci 2021; 27:e3330. [PMID: 33843136 DOI: 10.1002/psc.3330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022]
Abstract
Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from an Australian tree frog and exhibits low micromolar activity against Gram-positive bacteria. The antimicrobial properties of Mac1 are linked to its disruption of bacterial lipid membranes, which has been studied extensively by in vitro nuclear magnetic resonance (NMR) spectroscopy and biophysical approaches. Although in vivo NMR has recently proven effective in probing peptide-lipid interplay in live bacterial cells, direct structural characterisation of AMPs has been prohibited by low sensitivity and overwhelming background noise. To overcome this issue, we report a recombinant expression protocol to produce isotopically enriched Mac1. We utilized a double-fusion construct to alleviate toxicity against the Escherichia coli host and generate the native N-free and C-amidated termini Mac1 peptide. The SUMO and intein tags allowed native N-terminus and C-terminal amidation, respectively, to be achieved in a one-pot reaction. The protocol yielded 0.1 mg/L of native, uniformly 15 N-labelled, Mac1, which possessed identical structure and activity to peptide obtained by solid-phase peptide synthesis.
Collapse
Affiliation(s)
- Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel K Weber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Ramos-Martín F, D’Amelio N. Molecular Basis of the Anticancer and Antibacterial Properties of CecropinXJ Peptide: An In Silico Study. Int J Mol Sci 2021; 22:E691. [PMID: 33445613 PMCID: PMC7826669 DOI: 10.3390/ijms22020691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/04/2023] Open
Abstract
Esophageal cancer is an aggressive lethal malignancy causing thousands of deaths every year. While current treatments have poor outcomes, cecropinXJ (CXJ) is one of the very few peptides with demonstrated in vivo activity. The great interest in CXJ stems from its low toxicity and additional activity against most ESKAPE bacteria and fungi. Here, we present the first study of its mechanism of action based on molecular dynamics (MD) simulations and sequence-property alignment. Although unstructured in solution, predictions highlight the presence of two helices separated by a flexible hinge containing P24 and stabilized by the interaction of W2 with target biomembranes: an amphipathic helix-I and a poorly structured helix-II. Both MD and sequence-property alignment point to the important role of helix I in both the activity and the interaction with biomembranes. MD reveals that CXJ interacts mainly with phosphatidylserine (PS) but also with phosphatidylethanolamine (PE) headgroups, both found in the outer leaflet of cancer cells, while salt bridges with phosphate moieties are prevalent in bacterial biomimetic membranes composed of PE, phosphatidylglycerol (PG) and cardiolipin (CL). The antibacterial activity of CXJ might also explain its interaction with mitochondria, whose phospholipid composition recalls that of bacteria and its capability to induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| |
Collapse
|
9
|
Nielsen JE, Prévost SF, Jenssen H, Lund R. Impact of antimicrobial peptides on E. coli-mimicking lipid model membranes: correlating structural and dynamic effects using scattering methods. Faraday Discuss 2021; 232:203-217. [DOI: 10.1039/d0fd00046a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using X-rays and neutrons we address the effect of AMPs on structure and dynamics of lipids in bacterial model membranes.
Collapse
Affiliation(s)
| | | | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Reidar Lund
- Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
10
|
Ramos-Martín F, Herrera-León C, Antonietti V, Sonnet P, Sarazin C, D’Amelio N. Antimicrobial Peptide K11 Selectively Recognizes Bacterial Biomimetic Membranes and Acts by Twisting Their Bilayers. Pharmaceuticals (Basel) 2020; 14:1. [PMID: 33374932 PMCID: PMC7821925 DOI: 10.3390/ph14010001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
K11 is a synthetic peptide originating from the introduction of a lysine residue in position 11 within the sequence of a rationally designed antibacterial scaffold. Despite its remarkable antibacterial properties towards many ESKAPE bacteria and its optimal therapeutic index (320), a detailed description of its mechanism of action is missing. As most antimicrobial peptides act by destabilizing the membranes of the target organisms, we investigated the interaction of K11 with biomimetic membranes of various phospholipid compositions by liquid and solid-state NMR. Our data show that K11 can selectively destabilize bacterial biomimetic membranes and torque the surface of their bilayers. The same is observed for membranes containing other negatively charged phospholipids which might suggest additional biological activities. Molecular dynamic simulations reveal that K11 can penetrate the membrane in four steps: after binding to phosphate groups by means of the lysine residue at the N-terminus (anchoring), three couples of lysine residues act subsequently to exert a torque in the membrane (twisting) which allows the insertion of aromatic side chains at both termini (insertion) eventually leading to the flip of the amphipathic helix inside the bilayer core (helix flip and internalization).
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France; (C.H.-L.); (C.S.)
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France; (C.H.-L.); (C.S.)
| | - Viviane Antonietti
- Agents Infectieux, Résistance et Chimiothérapie, AGIR UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, 80037 Amiens, France; (V.A.); (P.S.)
| | - Pascal Sonnet
- Agents Infectieux, Résistance et Chimiothérapie, AGIR UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, 80037 Amiens, France; (V.A.); (P.S.)
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France; (C.H.-L.); (C.S.)
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France; (C.H.-L.); (C.S.)
| |
Collapse
|
11
|
Sandhu G, Morrow MR, Booth V. Roles of histidine charge and cardiolipin in membrane disruption by antimicrobial peptides Gaduscidin-1 and Gaduscidin-2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183444. [PMID: 32822647 DOI: 10.1016/j.bbamem.2020.183444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022]
Abstract
Gad-1 and Gad-2 are helical, histidine-rich antimicrobial peptides (AMPs) from paralogous genes in cod. 15N and 2H solid state nuclear magnetic resonance (NMR) were used to characterize their lipid-bound structures and lipid interactions. Gad-1 was found to position in-plane in POPC: POPG bilayers. Gad-1 displayed greater effects than Gad-2 on lipid acyl chain order of POPE: POPG and POPE: POPG: CL bilayers, in keeping with its greater activity against E. coli. The effect of Gad-1 and Gad-2 on lipid bilayer order was only weakly affected by changes in pH, and hence changes in histidine charge. This was somewhat surprising for Gad-2 as this peptide's biological activity has been shown to be greater at low pH and thus the finding may point to the existence of functional interactions with non-lipid components of bacteria. The incorporation of cardiolipin into POPE: POPG bilayers in such a way as to preserve the overall charge of the bilayers did not alter Gad-1's effects on lipid acyl chain order parameters, which report on motions on the 10-5 s timescale. When cardiolipin and Gad-1 were both present, there were subtle changes on membrane dynamics at other timescales.
Collapse
Affiliation(s)
- Gagandeep Sandhu
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Valerie Booth
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
12
|
Karas JA, Keizer DW, Sani MA. Nuclear Magnetic Resonance Study of the Peptide FRANCESSEPAROVIC. Aust J Chem 2020. [DOI: 10.1071/ch19357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As an eminent ambassador of STEM and renowned NMR spectroscopist, Frances Separovic is an internationally famous name, but could it also be a valuable membrane-active peptide sequence? Her name has been used as an amino acid sequence (FS), successfully synthesised, oxidised, and put into contact with membrane models to investigate any serendipitous activity. The 3D structure of the cyclic FS was determined in dodecylphosphocholine (DPC) micelles by solution NMR spectroscopy. FS displayed a twisted bend separating a helical stretch and an unstructured segment. Using solid-state NMR spectroscopy, the effect of FS on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS) lipid bilayers was studied. FS did not strongly disturb the neutral membrane surface but likely inserted into their hydrophobic core without a strong effect on the lipid dynamics, while perturbation of the negatively charged membranes remained at the headgroup interface with a strong effect on the lipid dynamics. This study demonstrated that FS is a candidate for discovering potential future therapeutic activities.
Collapse
|
13
|
Separovic F. Biophysics & Structural Biology at Synchrotrons BSBS 2019 Biological NMR Session. Biophys Rev 2019; 11:531-532. [PMID: 31123918 PMCID: PMC6682187 DOI: 10.1007/s12551-019-00521-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|