1
|
Olagunju AT, Wang J, Edet B, Onwuameze OE, Macaluso M. Racial and Ethnic Considerations for the Clinical Practice of Psychopharmacology and Research Methodology: A Narrative Review of the Growing Body of Literature. J Psychiatr Pract 2025; 31:56-64. [PMID: 40163569 DOI: 10.1097/pra.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
BACKGROUND Race and ethnicity are important but often underexamined factors in psychopharmacology research and clinical practice. This review summarizes key findings on ethnic and racial considerations for researchers, medical practitioners, and clinical psychopharmacologists. We hope it serves an important function in highlighting a critically important, yet still emerging issue to inform research and therapeutic use of psychotropics to improve their effectiveness. METHODS We queried major databases (PubMed, PsycInfo, Embase) using a search strategy that included MeSH (Medical Subject Headings) terms and conducted a snowball search to identify studies addressing ethnic or racial aspects of psychopharmacological practice. Findings were synthesized and presented in clinically applicable areas. RESULTS The clinically relevant ethnic and racial considerations identified in this review can be broadly categorized into the following areas: (1) variations in therapeutic and adverse dose-responses (eg, non-Whites attaining therapeutic and adverse effects at lower doses with certain medications); (2) interracial differences in prescription patterns of psychotropics, with lower prescription rates among under-represented minority groups and greater use of first-generation antipsychotics in African American populations; and (3) variations in attitudes toward psychopharmacotherapy. While differences in medication response can be partially explained by genetic variations in metabolism or receptor sensitivity, systemic racism and social determinants of health continue to have an influence. CONCLUSIONS The evidence base for ethnic and racial considerations in psychopharmacology research and clinical practice continues to evolve with growing consideration for diversity and inclusivity in training, research, and clinical practice. This is critical to promoting equitable and effective care to a diverse population. Key questions are highlighted to draw attention to these critical needs.
Collapse
Affiliation(s)
- Andrew Toyin Olagunju
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma, Oklahoma City, OK
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
- Forensic Psychiatry Program, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
- Federal Neuropsychiatric Hospital Calabar, Calabar, Cross River, Nigeria
| | - Jeffrey Wang
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Bassey Edet
- Federal Neuropsychiatric Hospital Calabar, Calabar, Cross River, Nigeria
| | - Obiora E Onwuameze
- Department of Psychiatry, Southern Illinois University School of Medicine, Springfield, IL
| | - Matthew Macaluso
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama, Birmingham, AL
| |
Collapse
|
2
|
Li M. Exploring antidepressant-based therapeutic strategy for digestive disorders based on brain-gut axis. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:556-560. [DOI: 10.11569/wcjd.v32.i8.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
3
|
Gareeva AE, Borodina LS, Pozdnyakov SA, Timerbulatov IF. [Pharmacogenomic and pharmacometabolomic biomarkers of the efficacy and safety of antidepressants: focus on selective serotonin reuptake inhibitors]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:26-35. [PMID: 39072563 DOI: 10.17116/jnevro202412406126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The efficacy and safety of psychopharmacotherapy with antidepressants is of great medical importance. The search for clinical and biological predictors for choosing the optimal psychopharmacotherapy with antidepressants is actively underway all over the world. Research is mainly devoted to searching for associations of polymorphic gene variants with the efficacy and safety of therapy. However, information about a patient's genetic polymorphism is often insufficient to predict the efficacy and safety of a drug. Modern research on the personalization of pharmacotherapy should include, in addition to genetic, phenotypic biomarkers. This is important because genotyping, for example, cannot accurately predict the actual metabolic activity of an isoenzyme. To personalize therapy, a combination of methods is required to obtain the most complete profile of the efficacy and safety of the drug. Successful treatment of depression remains a challenge, and inter-individual differences in response to antidepressants are common. About half of patients with depressive disorders do not respond to the first attempt at antidepressant therapy. Serious side-effects of antidepressant pharmacotherapy and discontinuation of treatment due to their intolerance are associated with ineffective therapy. This review presents the results of the latest studies of «omics» biomarkers of the efficacy and safety of antidepressants.
Collapse
Affiliation(s)
- A E Gareeva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russia
- Kemerovo State University, Kemerovo, Russia
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - L S Borodina
- Republican Narcological Dispensary No. 1, Ufa, Russia
| | - S A Pozdnyakov
- Moscow Scientific and Practical Center for Narcology of the Moscow Health Department, Moscow, Russia
| | - I F Timerbulatov
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
- Usoltsev Central Clinical Psychiatric Hospital, Moscow, Russia
- Russian University of Medicine, Moscow, Russia
| |
Collapse
|
4
|
Radosavljevic M, Svob Strac D, Jancic J, Samardzic J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes (Basel) 2023; 14:1095. [PMID: 37239455 PMCID: PMC10218654 DOI: 10.3390/genes14051095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.
Collapse
Affiliation(s)
- Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Smith DM, Figg WD. Evidence Regarding Pharmacogenetics in Pain Management and Cancer. Oncologist 2023; 28:189-192. [PMID: 36718020 PMCID: PMC10020807 DOI: 10.1093/oncolo/oyac277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/15/2022] [Indexed: 02/01/2023] Open
Abstract
Patients experience interindividual variation in response to analgesics, which may be partially explained by genetics. This commentary discusses a recently published trial on COMT genotype and opioid dose requirements and describes the potential role for COMT and other genes (eg, CYP2D6) on opioid therapy and the current evidence for germline pharmacogenetics and resources for opioid pharmacogenetics.
Collapse
Affiliation(s)
- D Max Smith
- Corresponding author: D. Max Smith, PharmD, MedStar Health, 3007 Tilden Street NW, Suite 7L, Washington, DC 20008, USA.
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Solhaug V, Haslemo T, Kringen MK, Molden E, Dietrichs ES. Genotyping of patients treated with selective serotonin reuptake inhibitors. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2022; 142:22-0017. [DOI: 10.4045/tidsskr.22.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
Kalbouneh HM, Toubasi AA, Albustanji FH, Obaid YY, Al‐Harasis LM. Safety and Efficacy of SSRIs in Improving Poststroke Recovery: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2022; 11:e025868. [PMID: 35730636 PMCID: PMC9333390 DOI: 10.1161/jaha.122.025868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022]
Abstract
Background Several studies investigated the role of selective serotonin reuptake inhibitors (SSRIs) in improving poststroke recovery; thus, we have decided to conduct this systematic review and meta-analysis to investigate the efficacy and safety of SSRIs in poststroke recovery. Methods and Results In this meta-analysis we searched the following databases: PubMed, Cochrane, Scopus, and Google Scholar. The studies were included if they were placebo-controlled trials in design and reported SSRIs' effects on poststroke depression, anxiety, disability, dependence, motor abilities, and cognitive functions. The quality of the included studies was assessed using the revised Cochrane risk-of-bias tool for randomized trials. The search yielded 44 articles that included 16 164 patients, and about half of the participants were treated with SSRIs. Our results showed that SSRIs had a significant effect on preventing depression (weighted mean difference [WMD], -7.05 [95% CI, -11.78 to -2.31]), treating depression according to the Hamilton Rating Scale for Depression score (WMD, -1.45 [95% CI, -2.77 to -0.14]), anxiety (relative risk, 0.23 [95% CI, 0.09-0.61]), dependence (WMD, 8.86 [95% CI, 1.23-16.48]), motor abilities according to National Institutes of Health Stroke Scale score (WMD, -0.79 [95% CI, -1.42 to -0.15]), and cognitive functions (WMD, 1.00 [95% CI, 0.12-1.89]). On the other hand, no significant effect of SSRIs on disability was observed. Additionally, we found that treating with SSRIs increased the risk of seizures (relative risk, 1.44 [95% CI, 1.13-1.83]), whereas there was no difference in the incidence of gastrointestinal symptoms or bleeding between SSRIs and a placebo. Conclusions Our study showed that SSRIs are effective in preventing and treating depression, and improving anxiety, motor function, cognitive function, and dependence in patients after stroke. These benefits were only reproducible with the citalopram subanalysis but not fluoxetine. Further well-conducted placebo-controlled trials are needed to investigate the safety and efficacy of citalopram among patients after stroke. Registration URL: www.crd.york.ac.uk/prospero/; Unique identifier: CRD42021285766.
Collapse
Affiliation(s)
- Heba M. Kalbouneh
- Department of AnatomyFaculty of MedicineUniversity of JordanAmmanJordan
| | | | | | | | | |
Collapse
|
8
|
Wang CW, Preclaro IAC, Lin WH, Chung WH. An Updated Review of Genetic Associations With Severe Adverse Drug Reactions: Translation and Implementation of Pharmacogenomic Testing in Clinical Practice. Front Pharmacol 2022; 13:886377. [PMID: 35548363 PMCID: PMC9081981 DOI: 10.3389/fphar.2022.886377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADR) remain the major problems in healthcare. Most severe ADR are unpredictable, dose-independent and termed as type B idiosyncratic reactions. Recent pharmacogenomic studies have demonstrated the strong associations between severe ADR and genetic markers, including specific HLA alleles (e.g., HLA-B*15:02/HLA-B*57:01/HLA-A*31:01 for carbamazepine-induced severe cutaneous adverse drug reactions [SCAR], HLA-B*58:01 for allopurinol-SCAR, HLA-B*57:01 for abacavir-hypersensitivity, HLA-B*13:01 for dapsone/co-trimoxazole-induced SCAR, and HLA-A*33:01 for terbinafine-induced liver injury), drug metabolism enzymes (such as CYP2C9*3 for phenytoin-induced SCAR and missense variant of TPMT/NUDT15 for thiopurine-induced leukopenia), drug transporters (e.g., SLCO1B1 polymorphism for statin-induced myopathy), and T cell receptors (Sulfanilamide binding into the CDR3/Vα of the TCR 1.3). This mini review article aims to summarize the current knowledge of pharmacogenomics of severe ADR, and the potentially clinical use of these genetic markers for avoidance of ADR.
Collapse
Affiliation(s)
- Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Ivan Arni C Preclaro
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
| | - Wei-Hsiang Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
9
|
Serretti A. Precision medicine in mood disorders. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e1. [PMID: 38868801 PMCID: PMC11114272 DOI: 10.1002/pcn5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2024]
Abstract
The choice of the most appropriate psychoactive medication for each of our patients is always a challenge. We can use more than 100 psychoactive drugs in the treatment of mood disorders, which can be prescribed either alone or in combination. Response and tolerability problems are common, and much trial and error is often needed before achieving a satisfactory outcome. Precision medicine is therefore needed for tailoring treatment to optimize outcome. Pharmacological, clinical, and demographic factors are important and informative, but biological factors may further inform and refine prediction. Twenty years after the first reports of gene variants modulating antidepressant response, we are now confronted with the prospect of routine clinical pharmacogenetic applications in the treatment of depression. The scientific community is divided into two camps: those who are enthusiastic and those who are skeptical. Although it appears clear that the benefit of existing tools is still not completely defined, at least in the case of central nervous system gene variants, this is not the case for metabolic gene variants, which is generally accepted. Cumulative scores encompassing many variants across the entire genome will soon predict psychiatric disorder liability and outcome. At present, precision medicine in mood disorders may be implemented using clinical and pharmacokinetic factors. In the near future, a genome-wide composite genetic score in conjunction with clinical factors within each patient is the most promising approach for developing a more effective way to target treatment for patients suffering from mood disorders.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Biomedical and NeuroMotor SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
10
|
Del Casale A, Pomes LM, Bonanni L, Fiaschè F, Zocchi C, Padovano A, De Luca O, Angeletti G, Brugnoli R, Girardi P, Preissner R, Borro M, Gentile G, Pompili M, Simmaco M. Pharmacogenomics-Guided Pharmacotherapy in Patients with Major Depressive Disorder or Bipolar Disorder Affected by Treatment-Resistant Depressive Episodes: A Long-Term Follow-Up Study. J Pers Med 2022; 12:316. [PMID: 35207804 PMCID: PMC8874425 DOI: 10.3390/jpm12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 01/25/2023] Open
Abstract
Treatment-resistant depression (TRD) reduces affected patients' quality of life and leads to important social health care costs. Pharmacogenomics-guided treatment (PGT) may be effective in the cure of TRD. The main aim of this study was to evaluate the clinical changes after PGT in patients with TRD (two or more recent failed psychopharmacological trials) affected by bipolar disorder (BD) or major depressive disorder (MDD) compared to a control group with treatment as usual (TAU). We based the PGT on assessing different gene polymorphisms involved in the pharmacodynamics and pharmacokinetics of drugs. We analyzed, with a repeated-measure ANOVA, the changes between the baseline and a 6 month follow-up of the efficacy index assessed through the Clinical Global Impression (CGI) scale, and depressive symptoms through the Hamilton Depression Rating Scale (HDRS). The PGT sample included 53 patients (26 BD and 27 MDD), and the TAU group included 52 patients (31 BD and 21 MDD). We found a significant within-subject effect of treatment time on symptoms and efficacy index for the whole sample, with significant improvements in the efficacy index (F = 8.544; partial η² = 0.077, p < 0.004) and clinical global impression of severity of illness (F = 6.818; partial η² = 0.062, p < 0.01) in the PGT vs. the TAU group. We also found a significantly better follow-up response (χ² = 5.479; p = 0.019) and remission (χ² = 10.351; p = 0.001) rates in the PGT vs. the TAU group. PGT may be an important option for the long-term treatment of patients with TRD affected by mood disorders, providing information that can better define drug treatment strategies and increase therapeutic improvement.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (A.D.C.); (P.G.)
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy; (L.B.); (F.F.); (C.Z.); (A.P.); (G.A.); (R.B.); (M.P.)
| | - Leda Marina Pomes
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Luca Bonanni
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy; (L.B.); (F.F.); (C.Z.); (A.P.); (G.A.); (R.B.); (M.P.)
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
| | - Federica Fiaschè
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy; (L.B.); (F.F.); (C.Z.); (A.P.); (G.A.); (R.B.); (M.P.)
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
| | - Clarissa Zocchi
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy; (L.B.); (F.F.); (C.Z.); (A.P.); (G.A.); (R.B.); (M.P.)
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
| | - Alessio Padovano
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy; (L.B.); (F.F.); (C.Z.); (A.P.); (G.A.); (R.B.); (M.P.)
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
| | - Ottavia De Luca
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Gloria Angeletti
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy; (L.B.); (F.F.); (C.Z.); (A.P.); (G.A.); (R.B.); (M.P.)
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
| | - Roberto Brugnoli
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy; (L.B.); (F.F.); (C.Z.); (A.P.); (G.A.); (R.B.); (M.P.)
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
| | - Paolo Girardi
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (A.D.C.); (P.G.)
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy; (L.B.); (F.F.); (C.Z.); (A.P.); (G.A.); (R.B.); (M.P.)
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité—University Medicine Berlin, 10115 Berlin, Germany;
| | - Marina Borro
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Maurizio Pompili
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy; (L.B.); (F.F.); (C.Z.); (A.P.); (G.A.); (R.B.); (M.P.)
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy; (L.M.P.); (O.D.L.); (M.B.); (G.G.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| |
Collapse
|
11
|
Stein K, Maruf AA, Müller DJ, Bishop JR, Bousman CA. Serotonin Transporter Genetic Variation and Antidepressant Response and Tolerability: A Systematic Review and Meta-Analysis. J Pers Med 2021; 11:jpm11121334. [PMID: 34945806 PMCID: PMC8707702 DOI: 10.3390/jpm11121334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
Antidepressants are used to treat several psychiatric disorders; however, a large proportion of patients do not respond to their first antidepressant therapy and often experience adverse drug reactions (ADR). A common insertion–deletion polymorphism in the promoter region (5-HTTLPR) of the serotonin transporter (SLC6A4) gene has been frequently investigated for its association with antidepressant outcomes. Here, we performed a systematic review and meta-analysis to assess 5-HTTLPR associations with antidepressants: (1) response in psychiatric disorders other than major depressive disorder (MDD) and (2) tolerability across all psychiatric disorders. Literature searches were performed up to January 2021, yielding 82 studies that met inclusion criteria, and 16 of these studies were included in the meta-analyses. Carriers of the 5-HTTLPR LL or LS genotypes were more likely to respond to antidepressant therapy, compared to the SS carriers in the total and European ancestry-only study populations. Long (L) allele carriers taking selective serotonin reuptake inhibitors (SSRIs) reported fewer ADRs relative to short/short (SS) carriers. European L carriers taking SSRIs had lower ADR rates than S carriers. These results suggest the 5-HTTLPR polymorphism may serve as a marker for antidepressant outcomes in psychiatric disorders and may be particularly relevant to SSRI treatment among individuals of European descent.
Collapse
Affiliation(s)
- Kiera Stein
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Abdullah Al Maruf
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel J. Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, 97078 Würzburg, Germany
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Chad A. Bousman
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada;
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
12
|
Strawn JR, Poweleit EA, Uppugunduri CRS, Ramsey LB. Pediatric Therapeutic Drug Monitoring for Selective Serotonin Reuptake Inhibitors. Front Pharmacol 2021; 12:749692. [PMID: 34658889 PMCID: PMC8517085 DOI: 10.3389/fphar.2021.749692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Therapeutic drug monitoring (TDM) is uncommon in child and adolescent psychiatry, particularly for selective serotonin reuptake inhibitors (SSRIs)—the first-line pharmacologic treatments for depressive and anxiety disorders. However, TDM in children and adolescents offers the opportunity to leverage individual variability of antidepressant pharmacokinetics to shed light on non-response and partial response, understand drug-drug interactions, evaluate adherence, and characterize the impact of genetic and developmental variation in pharmacokinetic genes. This perspective aims to educate clinicians about TDM principles and examines evolving uses of TDM in SSRI-treated youths and their early applications in clinical practice, as well as barriers to TDM in pediatric patients. First, the impact of pharmacokinetic genes on SSRI pharmacokinetics in youths could be used to predict tolerability and response for some SSRIs (e.g., escitalopram). Second, plasma concentrations are significantly influenced by adherence, which may relate to decreased efficacy. Third, pharmacometric analyses reveal interactions with proton pump inhibitors, oral contraceptives, cannabinoids, and SSRIs in youths. Rapid developments in TDM and associated modeling have enhanced the understanding of variation in SSRI pharmacokinetics, although the treatment of anxiety and depressive disorders with SSRIs in youths often remains a trial-and-error process.
Collapse
Affiliation(s)
- Jeffrey R Strawn
- Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States.,Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Child and Adolescent Psychiatry, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ethan A Poweleit
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Chakradhara Rao S Uppugunduri
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Laura B Ramsey
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
13
|
Genetic variants associated with cardiometabolic abnormalities during treatment with selective serotonin reuptake inhibitors: a genome-wide association study. THE PHARMACOGENOMICS JOURNAL 2021; 21:574-585. [PMID: 33824429 DOI: 10.1038/s41397-021-00234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 02/02/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are prescribed both to patients with schizophrenia and bipolar disorder. Previous studies have shown associations between SSRI treatment and cardiometabolic alterations. The aim of the present study was to investigate genetic variants associated with cardiometabolic adverse effects in patients treated with SSRIs in a naturalistic setting, using a genome-wide cross-sectional approach in a genetically homogeneous sample. We included and genotyped 1981 individuals with schizophrenia or bipolar disorder, of whom 1180 had information available on the outcomes low-density lipoprotein cholesterol (LDL-cholesterol), high-density lipoprotein cholesterol (HDL-cholesterol), triglycerides, and body mass index (BMI) and investigated interactions between SNPs and SSRI use (N = 246) by conducting a genome-wide GxE analysis. We report 13 genome-wide significant interaction effects of SNPs and SSRI serum concentrations on LDL-cholesterol, HDL-cholesterol, and BMI, located in four distinct genomic loci. This study provides new insight into the pharmacogenetics of SSRI but warrants replication in independent populations.
Collapse
|
14
|
Ayala-Lopez N, Watts SW. Physiology and Pharmacology of Neurotransmitter Transporters. Compr Physiol 2021; 11:2279-2295. [PMID: 34190339 DOI: 10.1002/cphy.c200035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Regulation of the ability of a neurotransmitter [our focus: serotonin, norepinephrine, dopamine, acetylcholine, glycine, and gamma-aminobutyric acid (GABA)] to reach its receptor targets is regulated in part by controlling the access the neurotransmitter has to receptors. Transporters, located at both the cellular plasma membrane and in subcellular vesicles, carry a myriad of responsibilities that include enabling neurotransmitter release and controlling uptake of neurotransmitter back into a cell or vesicle. Driven largely by electrochemical gradients, these transporters move neurotransmitters. The regulation of the transporters themselves through changes in expression and/or posttranslational modification allows for fine-tuning of this system. Transporters have been best recognized as targets for psychoactive stimulants and remain a mainstay target of primarily central nervous system (CNS) acting drugs for treatment of debilitating diseases such as depression and anxiety. Studies reveal, however, that transporters are found and functional in tissues outside the CNS (gastrointestinal and cardiovascular tissues, for example). The importance of neurotransmitter transporters is underscored with discoveries that dysfunction of transporters can cause life-changing disease. This article provides a high-level review of major classes of both plasma membrane transporters and vesicular transporters. © 2021 American Physiological Society. Compr Physiol 11:2279-2295, 2021.
Collapse
Affiliation(s)
- Nadia Ayala-Lopez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Depressive Symptoms are Associated with low Serotonin Levels in Plasma but are not 5-HTTLPR Genotype Dependent in Older Adults. THE SPANISH JOURNAL OF PSYCHOLOGY 2021; 24:e28. [PMID: 33928891 DOI: 10.1017/sjp.2021.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Depressive symptoms are diagnosed by physicians using scales but their pathophysiology is unclear. Low serotonin (5-HT) levels play an important role in depression, and the 5-HT transporter (5-HTT) is an important regulator of plasma serotonin levels and reuptake. Additionally, the 5-HTT gene-linked polymorphic region (5-HTTLPR) is associated with depression. The aim was to clarify the roles of plasma serotonin levels in plasma and the 5HTTPLR polymorphism in depressive symptoms in older adults. A total of 84 older adult participants were evaluated. Depressive symptoms were measured using the Center for Epidemiologic Studies Depression Scale of 20 items (CESD-20). The plasma serotonin levels were determined by ELISA, and the 5-HTTLPR genotype was analyzed by PCR. Depressive symptoms were present in 39.3% (N = 33) of the participants. The median plasma serotonin level was 204.34 ng/mL (SD = 93.88). A significant correlation was found between the CESD-20 scale and plasma serotonin levels (r = -.256; p = .019). Low serotonin levels were associated with the presence of depressive symptoms (p = .001). The 5-HTTLPR analysis showed that of the 84 older adults, 35.7% had the SS genotype, 10.7% had the LL genotype, and 53.6% were heterozygous. The 5-HTTLPR polymorphism was not associated with depressive symptoms (p = .587) and plasma serotonin levels (p = 0.391). Depressive symptoms correlate with low serotonin levels in plasma, but not with the 5-HTTLPR polymorphism in older Mexican adults.
Collapse
|
16
|
Treatment-Resistant Depression Revisited: A Glimmer of Hope. J Pers Med 2021; 11:jpm11020155. [PMID: 33672126 PMCID: PMC7927134 DOI: 10.3390/jpm11020155] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Major Depressive Disorder (MDD) is a highly prevalent psychiatric disorder worldwide. It causes individual suffering, loss of productivity, increased health care costs and high suicide risk. Current pharmacologic interventions fail to produce at least partial response to approximately one third of these patients, and remission is obtained in approximately 30% of patients. This is known as Treatment-Resistant Depression (TRD). The burden of TRD exponentially increases the longer it persists, with a higher risk of impaired functional and social functioning, vast losses in quality of life and significant risk of somatic morbidity and suicidality. Different approaches have been suggested and utilized, but the results have not been encouraging. In this review article, we present new approaches to identify and correct potential causes of TRD, thereby reducing its prevalence and with it the overall burden of this disease entity. We will address potential contributory factors to TRD, most of which can be investigated in many laboratories as routine tests. We discuss endocrinological aberrations, notably, hypothalamic-pituitary-adrenal (HPA) axis dysregulation and thyroid and gonadal dysfunction. We address the role of Vitamin D in contributing to depression. Pharmacogenomic testing is being increasingly used to determine Single Nucleotide Polymorphisms in Cytochrome P450, Serotonin Transporter, COMT, folic acid conversion (MTHFR). As the role of immune system dysregulation is being recognized as potentially a major contributory factor to TRD, the measurement of C-reactive protein (CRP) and select immune biomarkers, where testing is available, can guide combination treatments with anti-inflammatory agents (e.g., selective COX-2 inhibitors) reversing treatment resistance. We focus on established and emerging test procedures, potential biomarkers and non-biologic assessments and interventions to apply personalized medicine to effectively manage treatment resistance in general and TRD specifically.
Collapse
|
17
|
Islam F, Gorbovskaya I, Müller DJ. Pharmacogenetic/Pharmacogenomic Tests for Treatment Prediction in Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:231-255. [PMID: 33834403 DOI: 10.1007/978-981-33-6044-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetic factors play a significant but complex role in antidepressant (AD) response and tolerability. During recent years, there is growing enthusiasm in the promise of pharmacogenetic/pharmacogenomic (PGx) tools for optimizing and personalizing treatment outcomes for patients with major depressive disorder (MDD). The influence of pharmacokinetic and pharmacodynamic genes on response and tolerability has been investigated, including those encoding the cytochrome P450 superfamily, P-glycoprotein, monoaminergic transporters and receptors, intracellular signal transduction pathways, and the stress hormone system. Genome-wide association studies are also identifying new genetic variants associated with AD response phenotypes, which, combined with methods such as polygenic risk scores (PRS), is opening up new avenues for novel personalized treatment approaches for MDD. This chapter describes the basic concepts in PGx of AD response, reviews the major pharmacokinetic and pharmacodynamic genes involved in AD outcome, discusses PRS as a promising approach for predicting AD efficacy and tolerability, and addresses key challenges to the development and application of PGx tests.
Collapse
Affiliation(s)
- Farhana Islam
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ilona Gorbovskaya
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Zerbinati L, Murri MB, Caruso R, Nanni MG, Lam W, De Padova S, Sabato S, Bertelli T, Schillani G, Giraldi T, Fielding R, Grassi L. Post-traumatic Stress Symptoms and Serotonin Transporter (5-HTTLPR) Polymorphism in Breast Cancer Patients. Front Psychiatry 2021; 12:632596. [PMID: 33967853 PMCID: PMC8097040 DOI: 10.3389/fpsyt.2021.632596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Post-traumatic Symptoms (PTSS) and Post-traumatic Stress Disorder (PTSD) have been reported to affect a quite significant proportion of cancer patients. No study has examined the relationship between serotonin transporter gene-linked polymorphic region (5-HTTLPR) and cancer, including Gene-Environment interactions between this polymorphism and specific causes of distress, such as cancer related problems (CRP) or life stressful events (SLE). Methods: One hundred and forty five breast cancer outpatients participated in the study and were assessed using the Impact of Event Scale (IES), the Problem List (PL) developed by the National Comprehensive Cancer Network (NCCN) Distress Management Guidelines and the Paykel's Life Events Interview to evaluate the exposure to SLE during the year before the cancer diagnosis. Each patient was genotyped for 5-HTTLPR polymorphism by analyzing genomic DNA obtained from whole blood cells. Gene-Environment interactions were tested through moderation analysis. Results: Twenty-six patients (17.7%) were classified as PTSS cases using the IES. Genotype and phenotype distributions did not differ across individuals with/without PTSS (genotype: χ2 = 1.5; df = 2; p = 0.3; phenotype χ2 = 0.9; df = 1; p = 0.2). For both the genotype and phenotype model, using CRP as a predictor showed significant gene-environment interactions with IES total score (p = 0.020 and p = 0.004, respectively), with individuals carrying the l/l allele showing a greater probability of experiencing PTSS. No interaction was found in relationship to SLE (p = 0.750). Conclusion: This study showed a significant GEI between CRP and PTSS in breast cancer patients, with carriers of the l/l allele showing indicators consistent with greater sensitivity to stress.
Collapse
Affiliation(s)
- Luigi Zerbinati
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Martino Belvederi Murri
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy.,University Hospital Psychiatry Unit, Integrated Department of Mental Health and Addictive Behavior, University S. Anna Hospital and Health Trust, Ferrara, Italy
| | - Rosangela Caruso
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy.,University Hospital Psychiatry Unit, Integrated Department of Mental Health and Addictive Behavior, University S. Anna Hospital and Health Trust, Ferrara, Italy
| | - Maria Giulia Nanni
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy.,University Hospital Psychiatry Unit, Integrated Department of Mental Health and Addictive Behavior, University S. Anna Hospital and Health Trust, Ferrara, Italy
| | - Wendy Lam
- Centre for Psycho-Oncological Research and Training, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Silvia De Padova
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola, Italy
| | - Silvana Sabato
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Tatiana Bertelli
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola, Italy
| | - Giulia Schillani
- Child Onco-Hematology Unit, Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Burlo Garofolo, Trieste, Italy
| | - Tullio Giraldi
- Section of Pharmacology, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Richard Fielding
- University Hospital Psychiatry Unit, Integrated Department of Mental Health and Addictive Behavior, University S. Anna Hospital and Health Trust, Ferrara, Italy.,Centre for Psycho-Oncological Research and Training, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Luigi Grassi
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy.,University Hospital Psychiatry Unit, Integrated Department of Mental Health and Addictive Behavior, University S. Anna Hospital and Health Trust, Ferrara, Italy
| |
Collapse
|
19
|
Abstract
Drug transporters are integral membrane proteins that play a critical role in drug disposition by affecting absorption, distribution, and excretion. They translocate drugs, as well as endogenous molecules and toxins, across membranes using ATP hydrolysis, or ion/concentration gradients. In general, drug transporters are expressed ubiquitously, but they function in drug disposition by being concentrated in tissues such as the intestine, the kidneys, the liver, and the brain. Based on their primary sequence and their mechanism, transporters can be divided into the ATP-binding cassette (ABC), solute-linked carrier (SLC), and the solute carrier organic anion (SLCO) superfamilies. Many X-ray crystallography and cryo-electron microscopy (cryo-EM) structures have been solved in the ABC and SLC transporter superfamilies or of their bacterial homologs. The structures have provided valuable insight into the structural basis of transport. This chapter will provide particular focus on the promiscuous drug transporters because of their effect on drug disposition and the challenges associated with them.
Collapse
Affiliation(s)
- Arthur G Roberts
- Pharmaceutical and Biomedical Sciences Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
20
|
Quincozes-Santos A, Rosa RL, Tureta EF, Bobermin LD, Berger M, Guimarães JA, Santi L, Beys-da-Silva WO. COVID-19 impacts the expression of molecular markers associated with neuropsychiatric disorders. Brain Behav Immun Health 2020; 11:100196. [PMID: 33521688 PMCID: PMC7834441 DOI: 10.1016/j.bbih.2020.100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) was initially characterized due to its impacts on the respiratory system; however, many recent studies have indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) significantly affects the brain. COVID-19 can cause neurological complications, probably caused by the induction of a cytokine storm, since there is no evidence of neurotropism by SARS-CoV-2. In line with this, the COVID-19 outbreak could accelerate the progression or affect the clinical outcomes of neuropsychiatric conditions. Thus, we analyzed differential gene expression datasets for clinical samples of COVID-19 patients and identified 171 genes that are associated with the pathophysiology of the following neuropsychiatric disorders: alcohol dependence, autism, bipolar disorder, depression, panic disorder, schizophrenia, and sleep disorder. Several of the genes identified are associated with causing some of these conditions (classified as elite genes). Among these elite genes, 9 were found for schizophrenia, 6 for autism, 3 for depression/major depressive disorder, and 2 for alcohol dependence. The patients with the neuropsychiatric conditions associated with the genes identified may require special attention as COVID-19 can deteriorate or accelerate neurochemical dysfunctions, thereby aggravating clinical outcomes. COVID-19 can impact the clinical outcomes of neuropsychiatric diseases (NP). Molecular markers of NP were differentially expressed in patients with COVID-19. Elite genes were found for schizophrenia, autism, depression and alcohol dependence.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Lopes Rosa
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Markus Berger
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Walter Orlando Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Antidepressant-Associated Mania in Bipolar Disorder: A Review and Meta-analysis of Potential Clinical and Genetic Risk Factors. J Clin Psychopharmacol 2020; 40:180-185. [PMID: 32134853 DOI: 10.1097/jcp.0000000000001186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSES/BACKGROUND Antidepressants (ADs) play a valuable role in treating the depressive episodes of bipolar disorder. However, 14% of these individuals taking ADs experience AD-associated mania (AAM) within a few weeks of starting treatment. Numerous studies have suggested potential clinical and genetic risk factors. We aimed to conduct a comprehensive systematic review and meta-analysis that integrates the past literature with the recent studies and identifies important predictors for AAM. METHODS/PROCEDURES The review was limited to experimentally designed studies that contain the relevant search terms in PubMed and PsychInfo. After removing studies that were in discordance with our criteria, the review included 24 reports examining clinical risk factors and 10 investigating genetic risk factors. Our meta-analysis was conducted on 5 clinical risk factors, each of which had at least 4 articles with extractable data. FINDINGS/RESULTS The only clinical factors in the literature that have been shown to be more indicative of AAM risk are AD monotherapy and tricyclic ADs. Among genetic factors, the serotonin transporter gene polymorphism may play a minor role in AAM. Our meta-analysis provided support for the number of prior depressive episodes. IMPLICATIONS/CONCLUSION Prevention of AAM may be served by early detection of recurrent depression episodes. Further large-scale longitudinal studies are required to determine the underpinnings of AAM.
Collapse
|
22
|
Fratelli C, Siqueira J, Silva C, Ferreira E, Silva I. 5HTTLPR Genetic Variant and Major Depressive Disorder: A Review. Genes (Basel) 2020; 11:E1260. [PMID: 33114535 PMCID: PMC7692865 DOI: 10.3390/genes11111260] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Major Depressive Disorder (MDD) is a disease that involves biological, psychological, and social interactions. Studies have shown the importance of genetics contribution to MDD development. The SCL6A4 protein (5HTTLPR) functions transporting serotonin, a neurotransmitter linked to mood and emotion, to the synaptic cleft. Hence, this study seeks, through a literature review, a better comprehension of the 5HTTLPR genetic variant association with MDD. For this purpose, a search was performed on the Virtual Health Library Portal for articles that related 5HTTLPR to MDD. Most of the articles found were conducted in the American continent, with one (1) study implemented in Brazil. 5HTTLPR associations were found regarding changes in the nervous system, pharmacology, and risk factors seen in MDD patients. When verifying the allelic distribution, the S allele had a higher frequency in most of the studies analyzed. Despite not finding a commonality in the different studies, the tremendous genetic variation found demonstrates the MDD complexity. For this reason, further studies in diverse populations should be conducted to assist in the understanding and treatment of the disease.
Collapse
Affiliation(s)
- Caroline Fratelli
- Postgraduate Program in Health Sciences and Technologies, Campus Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil;
| | - Jhon Siqueira
- Department of Pharmacy, Campus Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (J.S.); (C.S.); (E.F.)
| | - Calliandra Silva
- Department of Pharmacy, Campus Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (J.S.); (C.S.); (E.F.)
| | - Eduardo Ferreira
- Department of Pharmacy, Campus Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (J.S.); (C.S.); (E.F.)
| | - Izabel Silva
- Department of Pharmacy, Campus Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (J.S.); (C.S.); (E.F.)
| |
Collapse
|
23
|
Serretti A, Fabbri C. The search for personalized antidepressant treatments: what have we learned and where are we going. Pharmacogenomics 2020; 21:1095-1100. [PMID: 33016213 DOI: 10.2217/pgs-2019-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Over 20 years after the initial report of gene variants within the central nervous system modulating antidepressant response, we are now facing for the first time routine clinical pharmacogenetic applications. The scientific community is divided between enthusiasm and skepticism. It seems clear that the benefit of existing tools is not huge, at least for the central nervous system gene variants, while it is generally accepted for the metabolic gene variants. Findings from large international consortia suggest for the first time in psychiatric genetic research history that cumulative scores comprising many variants across the whole genome may reliably constitute liability factors for psychiatric disorders, this approach will most likely improve also present pharmacogenetic tools. A composite genetic score complemented with clinical risk factors for each patient is the most promising approach for a more effective method of targeted treatment for patients with depression.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Biomedical & NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical & NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Rindi G, Wiedenmann B. Neuroendocrine neoplasia of the gastrointestinal tract revisited: towards precision medicine. Nat Rev Endocrinol 2020; 16:590-607. [PMID: 32839579 DOI: 10.1038/s41574-020-0391-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Over the past 5 years, a number of notable research advances have been made in the field of neuroendocrine cancer, specifically with regard to neuroendocrine cancer of the gastrointestinal tract. The aim of this Review is to provide an update on current knowledge that has proven effective for the clinical management of patients with these tumours. For example, for the first time in the tubular gastrointestinal tract, well-differentiated high-grade (grade 3) tumours and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) are defined in the WHO classification. This novel classification enables efficient identification of the most aggressive well-differentiated neuroendocrine tumours and helps in defining the degree of aggressiveness of MiNENs. The Review also discusses updates to epidemiology, cell biology (including vesicle-specific components) and the as-yet-unresolved complex genetic background that varies according to site and differentiation status. The Review summarizes novel diagnostic instruments, including molecules associated with the secretory machinery, novel radiological approaches (including pattern recognition techniques), novel PET tracers and liquid biopsy combined with DNA or RNA assays. Surgery remains the treatment mainstay; however, peptide receptor radionuclide therapy with novel radioligands and new emerging medical therapies (including vaccination and immunotherapy) are evolving and being tested in clinical trials, which are summarized and critically reviewed here.
Collapse
Affiliation(s)
- Guido Rindi
- Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Bertram Wiedenmann
- Charité, Campus Virchow Klinikum and Charité Mitte, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
25
|
McGowan OO. Pharmacogenetics of anxiety disorders. Neurosci Lett 2020; 726:134443. [PMID: 31442515 DOI: 10.1016/j.neulet.2019.134443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are common and disabling conditions the treatment of which remains a challenge. While different groups of medication are available for their treatment, a substantial proportion of patients remain refractory to pharmacotherapy. The reason for this variation in the individual response to treatment has yet to be understood; however genetic factors have been shown to play an important role. Up to now there have been limited publications about pharmacogenetics of anxiety disorders, compared to studies in depression. Published studies are focused on pharmacogenetics of antidepressants rather than being disease specific. This review summarizes pharmacogenetic findings related to the anxiolytic treatment response and their possible functional mechanisms. This inevitably focuses on genes involved in the pharmacodynamics of the medications used, along with some genes implicated in the disease process, as well as briefly mentioning genetic factors associated with psychotherapeutic response.
Collapse
Affiliation(s)
- O O McGowan
- Leverndale Hospital, 510 Crookston Road, Glasgow G53 7TU, UK.
| |
Collapse
|
26
|
Miller MW. Leveraging genetics to enhance the efficacy of PTSD pharmacotherapies. Neurosci Lett 2020; 726:133562. [DOI: 10.1016/j.neulet.2018.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
|
27
|
Translational Studies in the Complex Role of Neurotransmitter Systems in Anxiety and Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:121-140. [PMID: 32002926 DOI: 10.1007/978-981-32-9705-0_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovery of innovative anxiolytics is severely hampering. Existing anxiolytics are developed decades ago and are still the therapeutics of choice. Moreover, lack of new drug targets forecasts a severe jeopardy in the future treatment of the huge population of CNS-diseased patients. We simply lack the knowledge on what is wrong in brains of anxious people (normal and diseased). Translational research, based on interacting clinical and preclinical research, is extremely urgent. In this endeavor, genetic and genomic approaches are part of the spectrum of contributing factors. We focus on three druggable targets: serotonin transporter, 5-HT1A, and GABAA receptors. It is still uncertain whether and how these targets are involved in normal and diseased anxiety processes. For serotonergic anxiolytics, the slow onset of action points to indirect effects leading to plasticity changes in brain systems leading to reduced anxiety. For GABAA benzodiazepine drugs, acute anxiolytic effects are found indicating primary mechanisms directly influencing anxiety processes. Close translational collaboration between fundamental academic and discovery research will lead to badly needed breakthroughs in the search for new anxiolytics.
Collapse
|
28
|
El-Mallakh RS, Ali Z. Therapeutic implications of the serotonin transporter gene in depression. Biomark Neuropsychiatry 2019. [DOI: 10.1016/j.bionps.2019.100004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
29
|
Ran L, Ai M, Wang W, Chen J, Wu T, Liu W, Jin J, Wang S, Kuang L. Rare variants in SLC6A4 cause susceptibility to major depressive disorder with suicidal ideation in Han Chinese adolescents and young adults. Gene 2019; 726:144147. [PMID: 31629822 DOI: 10.1016/j.gene.2019.144147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Suicidal ideation (SI) is the most serious symptom of major depressive disorder (MDD) and considered an extreme state. The serotonin transporter gene (SLC6A4) plays a significant role in MDD and suicide pathophysiology. Previous studies have revealed an association between common variants of SLC6A4 with the risk of MDD and suicide. However, very few studies have so far focused on the degree to which rare variants of SLC6A4 are responsible for the depression observed in adolescent and young adult suicide patients. The aim of this study was to examine the impact of common and rare variants of SLC6A4 on the risk of Han Chinese adolescents and young adults suffering MDD with SI. METHODS Targeted sequencing of the SLC6A4 gene was conducted using FastTarget technology in Han Chinese adolescents and young adults, of which 74 were MDD patients with SI and 150 were healthy controls. Gene-based association analyses of rare variants were performed using enrichment analysis and a cumulative allele test. An allele association study was performed against common variants. RESULTS After sequencing and bioinformatics analysis, a total of 15 single nucleotide variants (SNVs) were detected in the targeted regions from all participants, including 9 common and 6 rare variants. Among these, 5 rare variants were identified within the study group. Enrichment analysis of rare variants demonstrated a statistical difference (p = 0.042) between the study and control groups. Using cumulative allele analysis, alternative alleles in the SLC6A4 gene exhibited an association with MDD patients with SI (cumulative allele: OR = 10.18, 95% CI = 1.18-87.32, p = 0.017). No significant association was found between the 9 common SLC6A4 variants and MDD patients with SI. CONCLUSIONS Our results suggest that rare variants of SLC6A4 may contribute to a genetic risk of adolescents and young adults suffering MDD with SI.
Collapse
Affiliation(s)
- Liuyi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jianmei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tong Wu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Wei Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jiajia Jin
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Suya Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
30
|
Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol 2019; 12:407-442. [DOI: 10.1080/17512433.2019.1597706] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Juan C. Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| |
Collapse
|
31
|
Aldrich SL, Poweleit EA, Prows CA, Martin LJ, Strawn JR, Ramsey LB. Influence of CYP2C19 Metabolizer Status on Escitalopram/Citalopram Tolerability and Response in Youth With Anxiety and Depressive Disorders. Front Pharmacol 2019; 10:99. [PMID: 30837874 PMCID: PMC6389830 DOI: 10.3389/fphar.2019.00099] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/24/2019] [Indexed: 01/04/2023] Open
Abstract
In pediatric patients, the selective serotonin reuptake inhibitors (SSRIs) escitalopram and citalopram (es/citalopram) are commonly prescribed for anxiety and depressive disorders. However, pharmacogenetic studies examining CYP2C19 metabolizer status and es/citalopram treatment outcomes have largely focused on adults. We report a retrospective study of electronic medical record data from 263 youth < 19 years of age with anxiety and/or depressive disorders prescribed escitalopram or citalopram who underwent routine clinical CYP2C19 genotyping. Slower CYP2C19 metabolizers experienced more untoward effects than faster metabolizers (p = 0.015), including activation symptoms (p = 0.029) and had more rapid weight gain (p = 0.018). A larger proportion of slower metabolizers discontinued treatment with es/citalopram than normal metabolizers (p = 0.007). Meanwhile, faster metabolizers responded more quickly to es/citalopram (p = 0.005) and trended toward less time spent in subsequent hospitalizations (p = 0.06). These results highlight a disparity in treatment outcomes with es/citalopram treatment in youth with anxiety and/or depressive disorders when standardized dosing strategies were used without consideration of CYP2C19 metabolizer status. Larger, prospective trials are warranted to assess whether tailored dosing of es/citalopram based on CYP2C19 metabolizer status improves treatment outcomes in this patient population.
Collapse
Affiliation(s)
- Stacey L. Aldrich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ethan A. Poweleit
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Cynthia A. Prows
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Lisa J. Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jeffrey R. Strawn
- Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Laura B. Ramsey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
32
|
Loganovsky KN, Bomko MO, Abramenko IV, Kuts KV, Belous NI, Masiuk SV, Gresko MV, Loganovska TK, Antypchuk KY, Perchuk IV, Kreinis GY, Chumak SA. NEUROPSYCHOBIOLOGICAL MECHANISMS OF AFFECTIVE AND COGNITIVE DISORDERS IN THE CHORNOBYL CLEAN-UP WORKERS TAKING INTO ACCOUNT THE SPECIFIC GENE POLYMORPHISMS. PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2018; 23:373-409. [PMID: 30582858 DOI: 10.33145/2304-8336-2018-23-373-409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 06/09/2023]
Abstract
Relevance of the present work is determined by the considerable prevalence of both affective and cognitive disor-ders in the victims due to the Chornobyl accident, the pathogenesis of which is insufficiently studied.Objective is to identify the neuropsychiobiological mechanisms of the formation of the remote affective and cog-nitive disorders following exposure to ionizing radiation taking into account the specific gene polymorphisms.Design, object and methods of research. The retrospective and prospective cohort study with the external andinternal control groups. The randomized sample of the male participants in liquidation of the consequences of theaccident (Chornobyl clean-up workers, liquidators) at the Chornobyl nuclear power plant (ChNPP) in 1986-1987(n = 198) recruited from the Clinico-epidemiological registry (CER) of NRCRM aged 39-87 (M ± SD: 60.0-8.5 years)with the external irradiation dose ranged 0.6-5900.0 mSv (M ± SD: 456.0 ± 760.0 mSv) was examined. The compar-ison group (n = 110) consisted of the unexposed patients of the Radiation Psychoneurology Department with thecorresponding age and sex (the external control group). The internal control group included the liquidators irradi-ated at doses < 50.0 mSv (n = 42). The standard diagnostic neuropsychiatric scales, psychodiagnostic questionnairesand tests, neuropsychological methods (including the Wechsler Adult Intelligence Scale (WAIS) with premorbid IQ(pre-IQ) assessment), neuropsychiatric and psychophysiological methods (quantitative EEG (qEEG) and the audito-ry cognitive evoked potentials (Event-Related Potentials, ERP) were applied. The genotypes of the serotonin trans-porter gene SLC6A4 were determined by the 5_HTTLPR and rs25531 polymorphisms. The methods of descriptive and vari-ation statistics, non-parametric criteria, regression-correlation analysis, survival analysis by Kaplan - Meier and riskanalysis were used.Results. Cerebrovascular diseases, organic mental and depressive disorders, mainly of radiation-stress-relatednature, prevail among the liquidators. The overall risk of neuropsychiatric pathology increases (Pv < 0.001) with theirradiation dose. The verbal memory and learning are impaired, as well as the full IQ is reduced at the expense of theverbal one. The frequency of both mild cognitive impairment and dementia is risen. The cognitive impairment atdoses > 0.3 Sv is dose-dependent (r = 0.4-0.7; p = 0.03-0.003). Affective disorders (depression) and neurocogni-tive deficit are more severe at higher doses of irradiation (> 50 mSv). In the left posterior temporal region(Wernicke's area) the qEEG indices changes become dose-dependent at doses greater than 0.25-0.3 Sv. The dis-turbed brain information processes lateralized to the Wernicke's area are observed even at doses > 50 mSv. The car-riers of intermediate and low-level genotypes (LА/S, LА/LG, LG/LG, LG/S, S/S) of the serotonin transporter gene SLC6A4have more depressive disorders, especially severe ones, and tend to have more frequent and severe cognitive andstress-related disorders.The debut of depressive disorders in the carriers of the intermediate and low-activity genotypes occurs much earli-er (Log-Rank Test = 4.43, p = 0.035) in comparison with the carriers of the high-performance genotype LА/ LА.Conclusions. The radiation-induced dysfunction of the cortico-limbic system in the left dominant hemisphere ofthe human brain with a specific involvement of the hippocampus is considered to be the key cerebral basis of post-radiation organic brain damage. The association of genotypes by 5_HTTLPR and rs25531 polymorphisms of the SLC6A4gene with affective and cognitive disorders suggests the presence of neuropsychobiological features of these dis-orders associated with ionizing radiation depending on the certain gene polymorphisms.
Collapse
Affiliation(s)
- K N Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - M O Bomko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - I V Abramenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - N I Belous
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - M V Gresko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| | - S A Chumak
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», Melnykova str., 53, Kyiv, 04050, Ukraine
| |
Collapse
|
33
|
Chang DD, Eyre HA, Abbott R, Coudreaut M, Baune BT, Shaman JA, Lavretsky H, Lenze EJ, Merrill DA, Singh AB, Mulsant BH, Reynolds CF, Müller DJ, Bousman C. Pharmacogenetic guidelines and decision support tools for depression treatment: application to late-life. Pharmacogenomics 2018; 19:1269-1284. [DOI: 10.2217/pgs-2018-0099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Late-life depression (LLD) is a major depressive disorder that affects someone after the age of 60 years. LLD is frequently associated with inadequate response and remission from antidepressants, in addition to polypharmacy. Pharmacogenetics offers a promising approach to improve clinical outcomes in LLD via new discoveries determining the genetic basis of response rates and side effects, as well as the development of tailored pharmacogenetic-based decision support tools. This invited review evaluates the LLD pharmacogenetic evidence base and the extent to which this was incorporated into existing commercial decision support tools and clinical pharmacogenetic guidelines.
Collapse
Affiliation(s)
- Donald D Chang
- School of Medicine, University of Queensland-Ochsner Clinical School, Brisbane, Queensland, 4072, Australia
| | - Harris A Eyre
- Innovation Institute, Texas Medical Center, Houston, TX 77006, USA
- IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, 3220, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, 3003, Australia
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, 5055, Australia
| | - Ryan Abbott
- University of Surrey, Surrey, GU2 7XH, UK
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Michael Coudreaut
- Department of Psychiatry, Intermountain Healthcare, Salt Lake City, UT 84102, USA
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, 5055, Australia
| | | | - Helen Lavretsky
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University, St Louis, MO 63130, USA
| | - David A Merrill
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ajeet B Singh
- IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, 3220, Australia
| | - Benoit H Mulsant
- Department of Psychiatry, University of Toronto, Toronto, ON, M5S 3H7, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, M5S 3H7, Canada
| | - Charles F Reynolds
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, ON, M5S 3H7, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, M5S 3H7, Canada
| | - Chad Bousman
- Departments of Medical Genetics, Psychiatry, & Physiology & Pharmacology, University of Calgary, Calgary, AB, AN T2N 1N4, Canada
| |
Collapse
|
34
|
Tolahunase MR, Sagar R, Dada R. 5-HTTLPR and MTHFR 677C>T polymorphisms and response to yoga-based lifestyle intervention in major depressive disorder: A randomized active-controlled trial. Indian J Psychiatry 2018; 60:410-426. [PMID: 30581206 PMCID: PMC6278208 DOI: 10.4103/psychiatry.indianjpsychiatry_398_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is growing evidence suggesting that both genetic and environmental factors modulate treatment outcome in, a highly heterogeneous, major depressive disorder (MDD). 5-HTTLPR variant of the serotonin transporter gene (SLC6A4) and MTHFR 677C>T polymorphisms have been linked to the pathogenesis of MDD, and antidepressant treatment response. The evidence is lacking on the clinical utility of yoga in patients with MDD who have 5-HTTLPR and MTHFR 677C>T polymorphisms and less likely to respond to medications (SSRIs). AIMS We aimed to examine the impact of YBLI in those who have susceptible 5-HTTLPR and MTHFR 677C>T polymorphisms and are less likely to drug therapy with SSRIs. SETTINGS AND DESIGN In a 12 week randomized active-controlled trial, MDD patients (n = 178) were randomized to receive YBLI or drug therapy. METHODS Genotyping was conducted using PCR-based methods. The clinical remission was defined as BDI-II score ≤ 9. STATISTICAL ANALYSIS USED An intent-to-treat analysis was performed, and the association of genotype with treatment remission consisted of the logistic regression model. A P value of <0.05 was considered statistically significant. RESULTS Multivariate logistic regression models for remission including either 5-HTTLPR or MTHFR 677C>T genotypes showed statistically significant odds of remission in YOGA arm vs. DRUG arm. Neither 5-HTTLPR nor MTHFR 677C>T genotype showed any influence on remission to YBLI (P = 0.73 and P = 0.64, respectively). Further analysis showed childhood adversity interact with 5-HTTLPR and MTHFR 677C>T polymorphisms to decrease treatment response in DRUG treatment arm, but not in YOGA arm. CONCLUSIONS YBLI provides MDD remission in those who have susceptible 5-HTTLPR and MTHFR 677C>T polymorphisms and are resistant to SSRIs treatment. YBLI may be therapeutic for MDD independent of heterogeneity in its etiopathogenesis.
Collapse
Affiliation(s)
- Madhuri R Tolahunase
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
35
|
Goulas A, Raikos N, Krokos D, Mastrogianni O, Orphanidis A, Zisopoulos K, Tsepa A. Fatal intoxication with antidepressants: a case with many culprits. Forensic Sci Med Pathol 2018; 14:225-228. [PMID: 29488058 DOI: 10.1007/s12024-018-9960-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 12/30/2022]
Abstract
Serotonin-specific reuptake inhibitors (SSRIs) are generally considered safe drugs but fatal adverse effects do sometimes occur, often as a consequence of interactions with other serotonin active drugs. Polypharmacy is usually a problem that the elderly encounter, but it can also have dire consequences for young people, especially when an underlying heart condition is present. Thus, failure to diagnose heart disease and the use of contraindicated medications can be a lethal combination, irrespective of age. Here we present a case of a young adult suffering from bipolar disorder who used a combination of two SSRIs (citalopram and fluoxetine) and a monoamine oxidase inhibitor (MAO; moclobemide) with tragic consequences. The deceased also suffered from undiagnosed hypertrophic cardiomyopathy and was carrier of a genotype that may have predisposed him to increased sensitivity to SSRIs. The apparent difficulty in establishing the manner of death in this case is also discussed.
Collapse
Affiliation(s)
- Antonis Goulas
- 1st Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Nikolaos Raikos
- Department of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Diamantis Krokos
- Department of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Orthodoxia Mastrogianni
- Department of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Amvrosios Orphanidis
- Department of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Zisopoulos
- Department of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Androniki Tsepa
- Department of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
36
|
Stevenson JM. Insights and barriers to clinical use of serotonin transporter pharmacogenetics in antidepressant therapy. Pharmacogenomics 2018; 19:167-170. [PMID: 29325499 PMCID: PMC6291898 DOI: 10.2217/pgs-2017-0196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- James M Stevenson
- Department of Pharmacy & Therapeutics, University of Pittsburgh, School of Pharmacy, 335 Sutherland Drive, 209 Salk Pavilion, Pittsburgh, PA 15261, USA
| |
Collapse
|