1
|
Zhang J, Liu W, Zhang P, Song Y, Ye Z, Fu H, Yang S, Qin Q, Guo Z, Zhang J. Polymers for Improved Delivery of Iodinated Contrast Agents. ACS Biomater Sci Eng 2021; 8:32-53. [PMID: 34851607 DOI: 10.1021/acsbiomaterials.1c01082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
X-ray computed tomography (CT), as one of the most widely used noninvasive imaging modalities, can provide three-dimensional anatomic details with high resolution, which plays a key role in disease diagnosis and treatment assessment. However, although they are the most prevalent and FDA-approved contrast agents, iodinated water-soluble molecules still face some challenges in clinical applications, such as fast clearance, serious adverse effects, nonspecific distribution, and low sensitivity. Because of their high biocompatibility, tunable designability, controllable biodegradation, facile synthesis, and modification capability, the polymers have demonstrated great potential for efficient delivery of iodinated contrast agents (ICAs). Herein, we comprehensively summarized the applications of multifunctional polymeric materials for ICA delivery in terms of increasing circulation time, decreasing nephrotoxicity, and improving the specificity and sensitivity of ICAs for CT imaging. We mainly focused on various iodinated polymers from the aspects of preparation, functionalization, and application in medical diagnosis. Future perspectives for achieving better imaging and clinical translation are also discussed to motivate new technologies and solutions.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Weiming Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China.,Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Yanqiu Song
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Zhanpeng Ye
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Han Fu
- Graduate School of Tianjin Medical University, Tianjin 300070, China
| | - Shicheng Yang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Zhang P, Ma X, Guo R, Ye Z, Fu H, Fu N, Guo Z, Zhang J, Zhang J. Organic Nanoplatforms for Iodinated Contrast Media in CT Imaging. Molecules 2021; 26:7063. [PMID: 34885645 PMCID: PMC8658861 DOI: 10.3390/molecules26237063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
X-ray computed tomography (CT) imaging can produce three-dimensional and high-resolution anatomical images without invasion, which is extremely useful for disease diagnosis in the clinic. However, its applications are still severely limited by the intrinsic drawbacks of contrast media (mainly iodinated water-soluble molecules), such as rapid clearance, serious toxicity, inefficient targetability and poor sensitivity. Due to their high biocompatibility, flexibility in preparation and modification and simplicity for drug loading, organic nanoparticles (NPs), including liposomes, nanoemulsions, micelles, polymersomes, dendrimers, polymer conjugates and polymeric particles, have demonstrated tremendous potential for use in the efficient delivery of iodinated contrast media (ICMs). Herein, we comprehensively summarized the strategies and applications of organic NPs, especially polymer-based NPs, for the delivery of ICMs in CT imaging. We mainly focused on the use of polymeric nanoplatforms to prolong circulation time, reduce toxicity and enhance the targetability of ICMs. The emergence of some new technologies, such as theragnostic NPs and multimodal imaging and their clinical translations, are also discussed.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Xinyu Ma
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Ruiwei Guo
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Zhanpeng Ye
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
| | - Han Fu
- Graduate School, Tianjin Medical University, Tianjin 300070, China;
| | - Naikuan Fu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Zhigang Guo
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| | - Jianhua Zhang
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (R.G.); (Z.Y.)
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| | - Jing Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China; (P.Z.); (X.M.); (N.F.); (Z.G.)
| |
Collapse
|
3
|
Talacua H, Söntjens SHM, Thakkar SH, Brizard AMA, van Herwerden LA, Vink A, van Almen GC, Dankers PYW, Bouten CVC, Budde RPJ, Janssen HM, Kluin J. Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterials. Macromol Biosci 2020; 20:e2000024. [PMID: 32558365 DOI: 10.1002/mabi.202000024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 01/21/2023]
Abstract
For in situ tissue engineering (TE) applications it is important that implant degradation proceeds in concord with neo-tissue formation to avoid graft failure. It will therefore be valuable to have an imaging contrast agent (CA) available that can report on the degrading implant. For this purpose, a biodegradable radiopaque biomaterial is presented, modularly composed of a bisurea chain-extended polycaprolactone (PCL2000-U4U) elastomer and a novel iodinated bisurea-modified CA additive (I-U4U). Supramolecular hydrogen bonding interactions between the components ensure their intimate mixing. Porous implant TE-grafts are prepared by simply electrospinning a solution containing PCL2000-U4U and I-U4U. Rats receive an aortic interposition graft, either composed of only PCL2000-U4U (control) or of PCL2000-U4U and I-U4U (test). The grafts are explanted for analysis at three time points over a 1-month period. Computed tomography imaging of the test group implants prior to explantation shows a decrease in iodide volume and density over time. Explant analysis also indicates scaffold degradation. (Immuno)histochemistry shows comparable cellular contents and a similar neo-tissue formation process for test and control group, demonstrating that the CA does not have apparent adverse effects. A supramolecular approach to create solid radiopaque biomaterials can therefore be used to noninvasively monitor the biodegradation of synthetic implants.
Collapse
Affiliation(s)
- Hanna Talacua
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands.,Department of Cardio-Thoracic Surgery, Academic Medical Center Amsterdam, P. O. Box 22660, Amsterdam, 1100 DD, The Netherlands
| | | | - Shraddha H Thakkar
- Department of Biomedical Engineering, Laboratory of Cell and Tissue Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands
| | - Aurelie M A Brizard
- Philips Research, BioMolecular Engineering, High Tech Campus Eindhoven, High Tech Campus 11, Eindhoven, The Netherlands
| | - Lex A van Herwerden
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, Room H04-312, Utrecht, The Netherlands
| | - Geert C van Almen
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Dolech 2, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Dolech 2, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Laboratory of Cell and Tissue Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Dolech 2, Eindhoven, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology, Erasmus Medical Center Rotterdam, 's-Gravendijkwal 230, Rotterdam, The Netherlands
| | - Henk M Janssen
- SyMO-Chem BV, Eindhoven, Den Dolech 2, Eindhoven, The Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands.,Department of Cardio-Thoracic Surgery, Academic Medical Center Amsterdam, P. O. Box 22660, Amsterdam, 1100 DD, The Netherlands
| |
Collapse
|
4
|
Girard E, Chagnon G, Broisat A, Dejean S, Soubies A, Gil H, Sharkawi T, Boucher F, Roth GS, Trilling B, Nottelet B. From in vitro evaluation to human postmortem pre-validation of a radiopaque and resorbable internal biliary stent for liver transplantation applications. Acta Biomater 2020; 106:70-81. [PMID: 32014582 DOI: 10.1016/j.actbio.2020.01.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
The implantation of an internal biliary stent (IBS) during liver transplantation has recently been shown to reduce biliary complications. To avoid a potentially morbid ablation procedure, we developed a resorbable and radiopaque internal biliary stent (RIBS). We studied the mechanical and radiological properties of RIBS upon in vivo implantation in rats and we evaluated RIBS implantability in human anatomical specimens. For this purpose, a blend of PLA50-PEG-PLA50 triblock copolymer, used as a polymer matrix, and of X-ray-visible triiodobenzoate-poly(ε-caprolactone) copolymer (PCL-TIB), as a radiopaque additive, was used to design X-ray-visible RIBS. Samples were implanted in the peritoneal cavity of rats. The radiological, chemical, and biomechanical properties were evaluated during degradation. Further histological studies were carried out to evaluate the degradation and compatibility of the RIBS. A human cadaver implantability study was also performed. The in vivo results revealed a decline in the RIBS mechanical properties within 3 months, whereas clear and stable X-ray visualization of the RIBS was possible for up to 6 months. Histological analyses confirmed compatibility and resorption of the RIBS, with a limited inflammatory response. The RIBS could be successfully implanted in human anatomic specimens. The results reported in this study will allow the development of trackable and degradable IBS to reduce biliary complications after liver transplantation. STATEMENT OF SIGNIFICANCE: Biliary reconstruction during liver transplantation is an important source of postoperative morbidity and mortality although it is generally considered as an easy step of a difficult surgery. In this frame, internal biliary stent (IBS) implantation is beneficial to reduce biliary anastomosis complications (leakage, stricture). However, current IBS are made of non-degradable silicone elastomeric materials, which leads to an additional ablation procedure involving potential complications and additional costs. The present study provides in vitro and human postmortem implantation data related to the development and evaluation of a resorbable and radiopaque internal biliary stent (RIBS) that could tackle these drawbacks.
Collapse
Affiliation(s)
- Edouard Girard
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, 38000 Grenoble, France; Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de médecine de Grenoble, Université de Grenoble-Alpes, F-38700 Grenoble, France.
| | - Grégory Chagnon
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Alexis Broisat
- INSERM, Unité 1039, F-38000 Grenoble, France; Radiopharmaceutiques Biocliniques, Université Grenoble-Alpes, F-38000 Grenoble, France
| | - Stéphane Dejean
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Audrey Soubies
- INSERM, Unité 1039, F-38000 Grenoble, France; Radiopharmaceutiques Biocliniques, Université Grenoble-Alpes, F-38000 Grenoble, France
| | - Hugo Gil
- Département d'anatomopathologie et cytologie, Centre Hospitalier Grenoble-Alpes, 38000 Grenoble, France
| | - Tahmer Sharkawi
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - François Boucher
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; Radiopharmaceutiques Biocliniques, Université Grenoble-Alpes, F-38000 Grenoble, France
| | - Gaël S Roth
- Institute for Advanced Biosciences, INSERM U1209/CNRS UMR 5309, Université Grenoble-Alpes, F-38700 Grenoble, France; Clinique universitaire d'Hépato-gastroentérologie et Oncologie digestive, CHU Grenoble-Alpes, Grenoble 38043, France
| | - Bertrand Trilling
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France; Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, 38000 Grenoble, France; Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de médecine de Grenoble, Université de Grenoble-Alpes, F-38700 Grenoble, France
| | | |
Collapse
|
5
|
Wang W, Wei Z, Sang L, Wang Y, Zhang J, Bian Y, Li Y. Development of X-ray opaque poly(lactic acid) end-capped by triiodobenzoic acid towards non-invasive micro-CT imaging biodegradable embolic microspheres. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Van Horn BA, Davis LL, Nicolau SE, Burry EE, Bailey VO, Guerra FD, Alexis F, Whitehead DC. Synthesis and conjugation of a triiodohydroxylamine for the preparation of highly X-ray opaque poly(ε-caprolactone) materials. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Brooke A. Van Horn
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Lundy L. Davis
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Samantha E. Nicolau
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Emma E. Burry
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Victoria O. Bailey
- Department of Chemistry and Biochemistry; College of Charleston; 66 George Street Charleston South Carolina 29424
| | - Fernanda D. Guerra
- Department of Bioengineering; Clemson University, 203 Rhodes Research Center Annex; Clemson South Carolina 29634
| | - Frank Alexis
- Department of Bioengineering; Clemson University, 203 Rhodes Research Center Annex; Clemson South Carolina 29634
- Department of Bioengineering; Institute of Biological Interfaces of Engineering, Clemson University; Clemson South Carolina 29634-0905
| | - Daniel C. Whitehead
- Department of Chemistry; Clemson University, 467 Hunter Laboratories; Clemson South Carolina 29634
| |
Collapse
|
7
|
Wang T, Zhang Z, Song R, Tuo X, Wu J. Radiopaque polyurethanes with flexible iodine-containing chain extender. J Appl Polym Sci 2015. [DOI: 10.1002/app.42693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Teng Wang
- Key Laboratory of Advanced Materials (MOE); Department of Chemical Engineering; Tsinghua University; Beijing People's Republic of china
| | - Zhihua Zhang
- Key Laboratory of Advanced Materials (MOE); Department of Chemical Engineering; Tsinghua University; Beijing People's Republic of china
| | - Ran Song
- Key Laboratory of Advanced Materials (MOE); Department of Chemical Engineering; Tsinghua University; Beijing People's Republic of china
| | - Xinlin Tuo
- Key Laboratory of Advanced Materials (MOE); Department of Chemical Engineering; Tsinghua University; Beijing People's Republic of china
| | - Jigong Wu
- Department of Orthopaedics; the 306th Hospital of PLA; Beijing People's Republic of china
| |
Collapse
|
8
|
Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm 2015; 97:350-70. [DOI: 10.1016/j.ejpb.2015.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
|
9
|
Nicolau SE, Davis LL, Duncan CC, Olsen TR, Alexis F, Whitehead DC, Van Horn BA. Oxime functionalization strategy for iodinated poly(epsilon-caprolactone) X-ray opaque materials. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samantha E. Nicolau
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| | - Lundy L. Davis
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| | - Caroline C. Duncan
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| | - Timothy R. Olsen
- Department of Bioengineering; Clemson University; 203 Rhodes Research Center Annex Clemson South Carolina 29634
| | - Frank Alexis
- Department of Bioengineering; Clemson University; 203 Rhodes Research Center Annex Clemson South Carolina 29634
- Institute of Biological Interfaces of Engineering; Department of Bioengineering; Clemson University; Clemson South Carolina 29634-0905
| | - Daniel C. Whitehead
- Department of Chemistry; Clemson University; 467 Hunter Laboratories Clemson South Carolina 29634
| | - Brooke A. Van Horn
- Department of Chemistry and Biochemistry; College of Charleston; 66 George St. Charleston South Carolina 29424
| |
Collapse
|
10
|
Samuel R, Girard E, Chagnon G, Dejean S, Favier D, Coudane J, Nottelet B. Radiopaque poly(ε-caprolactone) as additive for X-ray imaging of temporary implantable medical devices. RSC Adv 2015. [DOI: 10.1039/c5ra19488a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A family of radiopaque PCL, poly(ε-caprolactone-co-α-triiodobenzoate-ε-caprolactone), has been designed, used and evaluated as macromolecular contrast agent for X-ray imaging of implantable polymeric biomaterials.
Collapse
Affiliation(s)
- Rémi Samuel
- Institute of Biomolecules Max Mousseron (IBMM) UMR 5247
- Department of Artificial Biopolymers
- CNRS
- University of Montpellier
- ENSCM
| | - Edouard Girard
- CHU de Grenoble
- TIMC-IMAG
- F-38000 Grenoble
- France
- Université Grenoble Alpes
| | - Grégory Chagnon
- Université Grenoble Alpes
- TIMC-IMAG
- F-38000 Grenoble
- France
- CNRS
| | - Stéphane Dejean
- Institute of Biomolecules Max Mousseron (IBMM) UMR 5247
- Department of Artificial Biopolymers
- CNRS
- University of Montpellier
- ENSCM
| | - Denis Favier
- Université Grenoble Alpes
- TIMC-IMAG
- F-38000 Grenoble
- France
- CNRS
| | - Jean Coudane
- Institute of Biomolecules Max Mousseron (IBMM) UMR 5247
- Department of Artificial Biopolymers
- CNRS
- University of Montpellier
- ENSCM
| | - Benjamin Nottelet
- Institute of Biomolecules Max Mousseron (IBMM) UMR 5247
- Department of Artificial Biopolymers
- CNRS
- University of Montpellier
- ENSCM
| |
Collapse
|