1
|
Pal S, Khan AH, Chowdhury M, Das PK. Peptide Amphiphilic Supramolecular Nanogels: Competent Host for Notably Efficient Lipase-Catalyzed Hydrolysis of Water-Insoluble Substrates. Chembiochem 2023; 24:e202300253. [PMID: 37232377 DOI: 10.1002/cbic.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 05/27/2023]
Abstract
The present work depicts the development of stable nanogels in an aqueous medium that were exploited for efficient surface-active lipase-catalyzed hydrolysis of water-insoluble substrates. Surfactant-coated gel nanoparticles (neutral NG1, anionic NG2, and cationic NG3) were prepared from peptide amphiphilic hydrogelator (G1, G2, and G3, respectively) at different hydrophilic and lipophilic balance (HLB). Chromobacterium viscosum (CV) lipase activity towards hydrolysis of water-insoluble substrates (p-nitrophyenyl-n-alkanoates (C4-C10)) in the presence of nanogels got remarkably improved by ~1.7-8.0 fold in comparison to that in aqueous buffer and other self-aggregates. An increase in hydrophobicity of the substrate led to a notable improvement in lipase activity in the hydrophilic domain (HLB>8.0) of nanogels. The micro-heterogeneous interface of small-sized (10-65 nm) nanogel was found to be an appropriate scaffold for immobilizing surface-active lipase to exhibit superior catalytic efficiency. Concurrently, the flexible conformation of lipase immobilized in nanogels was reflected in its secondary structure having the highest α-helix content from the circular dichroism spectra.
Collapse
Affiliation(s)
- Sudeshna Pal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| |
Collapse
|
2
|
Ranote S, Musioł M, Kowalczuk M, Joshi V, Chauhan GS, Kumar R, Chauhan S, Kumar K. Functionalized Moringa oleifera Gum as pH-Responsive Nanogel for Doxorubicin Delivery: Synthesis, Kinetic Modelling and In Vitro Cytotoxicity Study. Polymers (Basel) 2022; 14:polym14214697. [PMID: 36365689 PMCID: PMC9658875 DOI: 10.3390/polym14214697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Environment-responsive-cum-site-specific delivery of therapeutic drugs into tumor cells is a foremost challenge for chemotherapy. In the present work, Moringa oleifera gum-based pH-responsive nanogel (MOGN) was functionalized as a doxorubicin (DOX) carrier. It was synthesized via free radical polymerization through the γ-irradiation method using acrylamide and N,N'-MBA followed by hydrolysis, sonication, and ultracentrifugation. The swelling behavior of MOGN as a function of pH was assessed using a gravimetric method that revealed its superabsorbent nature (365.0 g/g). Furthermore, MOGN showed a very high loading efficiency (98.35 %L) of DOX by MOGN. In vitro release studies revealed that DOX release from DOX-loaded MOGN was 91.92% at pH 5.5 and 12.18% at 7.4 pH, thus favorable to the tumor environment. The drug release from nanogel followed Korsmeyer-Peppas model at pH 5.5 and 6.8 and the Higuchi model at pH 7.4. Later, the efficient DOX release at the tumor site was also investigated by cytotoxicity study using Rhabdomyosarcoma cells. Thus, the synthesized nanogel having high drug loading capacity and excellent pH-triggered disintegration and DOX release performance in a simulated tumor environment could be a promising candidate drug delivery system for the targeted and controlled release of anticancer drugs.
Collapse
Affiliation(s)
- Sunita Ranote
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University, SRT Campus, Tehri Garhwal, Srinagar 249199, Uttarakhand, India
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, Himachal Pradesh, India
- Correspondence: (S.R.); (M.K.); Tel.: +48-734-801-150 (S.R.)
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
- Correspondence: (S.R.); (M.K.); Tel.: +48-734-801-150 (S.R.)
| | - Veena Joshi
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University, SRT Campus, Tehri Garhwal, Srinagar 249199, Uttarakhand, India
| | - Ghanshyam S. Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, Himachal Pradesh, India
| | - Rakesh Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, Himachal Pradesh, India
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, Himachal Pradesh, India
| | - Kiran Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, Himachal Pradesh, India
| |
Collapse
|
3
|
Preparation and Characterization of Magnetic Metal–Organic Frameworks Functionalized by Ionic Liquid as Supports for Immobilization of Pancreatic Lipase. Molecules 2022; 27:molecules27206800. [PMID: 36296392 PMCID: PMC9609868 DOI: 10.3390/molecules27206800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Enzymes are difficult to recycle, which limits their large-scale industrial applications. In this work, an ionic liquid-modified magnetic metal–organic framework composite, IL-Fe3O4@UiO-66-NH2, was prepared and used as a support for enzyme immobilization. The properties of the support were characterized with X-ray powder diffraction (XRD), Fourier-transform infrared (FTIR) spectra, transmission electron microscopy (TEM), scanning electronic microscopy (SEM), and so on. The catalytic performance of the immobilized enzyme was also investigated in the hydrolysis reaction of glyceryl triacetate. Compared with soluble porcine pancreatic lipase (PPL), immobilized lipase (PPL-IL-Fe3O4@UiO-66-NH2) had greater catalytic activity under reaction conditions. It also showed better thermal stability and anti-denaturant properties. The specific activity of PPL-IL-Fe3O4@UiO-66-NH2 was 2.3 times higher than that of soluble PPL. After 10 repeated catalytic cycles, the residual activity of PPL-IL-Fe3O4@UiO-66-NH2 reached 74.4%, which was higher than that of PPL-Fe3O4@UiO-66-NH2 (62.3%). In addition, kinetic parameter tests revealed that PPL-IL-Fe3O4@UiO-66-NH2 had a stronger affinity to the substrate and, thus, exhibited higher catalytic efficiency. The results demonstrated that Fe3O4@UiO-66-NH2 modified by ionic liquids has great potential for immobilized enzymes.
Collapse
|
4
|
Polyethyleneimine-Functionalized Carbon Nanotubes Enabling Potent Antimycotic Activity of Lyticase. Polymers (Basel) 2022; 14:polym14050959. [PMID: 35267782 PMCID: PMC8912707 DOI: 10.3390/polym14050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, the positively-charged polymer polyethyleneimine was used to functionalize carbon nanotubes and activated carbon to load antimycotic enzyme lyticase. Interestingly, polyethyleneimine played a dual role functionalizing carbon materials to synergistically enhance antimycotic activity of loaded lyticase as well as exhibiting its own apparent antimycotic activity, where the enhanced enzymatic activity of loaded lyticase on functionalized carbon nanotubes was more than 2.8 times as high as the activity of free enzyme in solution. The actual activity of loaded lyticase on functionalized carbon nanotubes was applied with Penicillium janthinellum, exhibiting much faster digesting lysis of the bacteria in comparison with free lyticase. The synergistic and potent antimycotic activities from combined action of antimycotic lyticase and polyethyleneimine on carbon nanotubes provides a new antimycotic protection for medicine, food industry, and other biochemical processes.
Collapse
|
5
|
Immobilization and stabilization of pectinase on an activated montmorillonite support and its application in pineapple juice clarification. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Jamwal S, Ranote S, Dautoo U, Chauhan GS. Improving activity and stabilization of urease by crosslinking to nanoaggregate forms for herbicide degradation. Int J Biol Macromol 2020; 158:521-529. [PMID: 32360462 DOI: 10.1016/j.ijbiomac.2020.04.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/25/2020] [Indexed: 01/14/2023]
Abstract
Bioremediation is the most effective green protocol for degradation of environmental contaminants. Present study involves carrier free urease immobilization with synthesis of its new crosslinked aggregates using two different crosslinkers, divinyl benzene (DVB) and tripropyleneglycol dimethacrylate (TPGDA) via free radical mechanism. Resulting crosslinked ureases were further converted to nanoform (CLUNAs) using solvent evaporation technique. The activity of free and the crosslinked ureases was studied as a function of operational parameters viz. temperature (20-80), pH (2-11) and substrate concentration (5-20 mM) using urea as substrate at contact time of 10 min. Storability study of the pristine urease and CLUNAs was carried out for 40 days, and the CLUNAs were reused in 10 repeat cycles to assess their reusability. Isoproturone degradation was studied under the above-cited range of pH and temperature and results were recorded after 24 h.
Collapse
Affiliation(s)
- Shivani Jamwal
- Himachal Pradesh University, Department of Chemistry, Summerhill, Shimla 171005, Himachal Pradesh, India
| | - Sunita Ranote
- Himachal Pradesh University, Department of Chemistry, Summerhill, Shimla 171005, Himachal Pradesh, India
| | - Umesh Dautoo
- Himachal Pradesh University, Department of Chemistry, Summerhill, Shimla 171005, Himachal Pradesh, India
| | - Ghanshyam S Chauhan
- Himachal Pradesh University, Department of Chemistry, Summerhill, Shimla 171005, Himachal Pradesh, India.
| |
Collapse
|
7
|
Reinicke S, Fischer T, Bramski J, Pietruszka J, Böker A. Biocatalytically active microgels by precipitation polymerization of N-isopropyl acrylamide in the presence of an enzyme. RSC Adv 2019; 9:28377-28386. [PMID: 35529607 PMCID: PMC9071056 DOI: 10.1039/c9ra04000e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/02/2019] [Indexed: 11/21/2022] Open
Abstract
We present a novel protocol for the synthesis of enzymatically active microgels. The protocol is based on the precipitation polymerization of N-isopropylacrylamide (NIPAm) in the presence of an enzyme and a protein binding comonomer. A basic investigation on the influence of different reaction parameters such as monomer concentration and reaction temperature on the microgel size and size distribution is performed and immobilization yields are determined. Microgels exhibiting hydrodynamic diameters between 100 nm and 1 μm and narrow size distribution could be synthesized while about 31-44% of the enzyme present in the initial reaction mixture can be immobilized. Successful immobilization including a verification of enzymatic activity of the microgels is achieved for glucose oxidase (GOx) and 2-deoxy-d-ribose-5-phosphate aldolase (DERA). The thermoresponsive properties of the microgels are assessed and discussed in the light of activity evolution with temperature. The positive correlation of enzymatic activity with temperature for the GOx containing microgel originates from a direct interaction of the enzyme with the PNIPAm based polymer matrix whose magnitude is highly influenced by temperature.
Collapse
Affiliation(s)
- Stefan Reinicke
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 Potsdam-Golm 14476 Germany
- Chair of Polymer Materials and Polymer Technologies, University of Potsdam Potsdam-Golm 14476 Germany
| | - Thilo Fischer
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 Potsdam-Golm 14476 Germany
- Chair of Polymer Materials and Polymer Technologies, University of Potsdam Potsdam-Golm 14476 Germany
| | - Julia Bramski
- Institut of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich Stetternicher Forst D-52426 Jülich Germany
| | - Jörg Pietruszka
- Institut of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich Stetternicher Forst D-52426 Jülich Germany
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 Potsdam-Golm 14476 Germany
- Chair of Polymer Materials and Polymer Technologies, University of Potsdam Potsdam-Golm 14476 Germany
| |
Collapse
|
8
|
Jamwal S, Dautoo UK, Ranote S, Dharela R, Chauhan GS. Enhanced catalytic activity of new acryloyl crosslinked cellulose dialdehyde-nitrilase Schiff base and its reduced form for nitrile hydrolysis. Int J Biol Macromol 2019; 131:117-126. [DOI: 10.1016/j.ijbiomac.2019.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
|
9
|
Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int J Biol Macromol 2019; 123:968-978. [DOI: 10.1016/j.ijbiomac.2018.11.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
|
10
|
|
11
|
Zhou L, Morel M, Rudiuk S, Baigl D. Intramolecularly Protein-Crosslinked DNA Gels: New Biohybrid Nanomaterials with Controllable Size and Catalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700706. [PMID: 28561941 DOI: 10.1002/smll.201700706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Indexed: 06/07/2023]
Abstract
DNA micro- and nanogels-small-sized hydrogels made of a crosslinked DNA backbone-constitute new promising materials, but their functions have mainly been limited to those brought by DNA. Here a new way is described to prepare sub-micrometer-sized DNA gels of controllable crosslinking density that are able to embed novel functions, such as an enzymatic activity. It consists of using proteins, instead of traditional base-pairing assembly or covalent approaches, to form crosslinks inside individual DNA molecules, resulting in structures referred to as intramolecularly protein-crosslinked DNA gels (IPDGs). It is first shown that the addition of streptavidin to biotinylated T4DNA results in the successful formation of thermally stable IPDGs with a controllable crosslinking density, forming structures ranging from elongated to raspberry-shaped and pearl-necklace-like morphologies. Using reversible DNA condensation strategies, this paper shows that the gels can be reversibly actuated at a low crosslinking density, or further stabilized when they are highly crosslinked. Finally, by using streptavidin-protein conjugates, IPDGs with various enzymes are successfully functionalized. It is demonstrated that the enzymes keep their catalytic activity upon their incorporation into the gels, opening perspectives ranging from biotechnologies (e.g., enzyme manipulation) to nanomedicine (e.g., vectorization).
Collapse
Affiliation(s)
- Li Zhou
- PASTEUR, Department of Chemistry, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, Ecole normale supérieure, CNRS, PASTEUR, 75005, Paris, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, Ecole normale supérieure, CNRS, PASTEUR, 75005, Paris, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, Ecole normale supérieure, CNRS, PASTEUR, 75005, Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, Ecole normale supérieure, CNRS, PASTEUR, 75005, Paris, France
| |
Collapse
|
12
|
Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose. Colloids Surf B Biointerfaces 2017; 152:339-343. [DOI: 10.1016/j.colsurfb.2017.01.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/31/2023]
|
13
|
Song M, Xue Y, Chen L, Xia X, Zhou Y, Liu L, Yu B, Long S, Huang S, Yu F. Acid and reduction stimulated logic “and”-type combinational release mode achieved in DOX-loaded superparamagnetic nanogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:354-63. [DOI: 10.1016/j.msec.2016.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/15/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
|
14
|
Marques Netto CGC, da Silva DG, Toma SH, Andrade LH, Nakamura M, Araki K, Toma HE. Bovine glutamate dehydrogenase immobilization on magnetic nanoparticles: conformational changes and catalysis. RSC Adv 2016. [DOI: 10.1039/c5ra24637g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glutamate dehydrogenase (GDH) was immobilized on different supports and systematically investigated in order to provide a better understanding of the immobilization effects on the catalysis of multimeric enzymes.
Collapse
Affiliation(s)
| | - Delmárcio G. da Silva
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Sergio H. Toma
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Leandro H. Andrade
- Laboratory of Fine Chemistry and Biocatalysis
- Instituto de Química
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Marcelo Nakamura
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Koiti Araki
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Henrique E. Toma
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| |
Collapse
|
15
|
Xue Y, Xia X, Yu B, Luo X, Cai N, Long S, Yu F. A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Adv 2015; 5:73416-73423. [DOI: 10.1039/c5ra13313k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
A one-pot preparation of a drug-loaded alginate nanogel was achieved upon the optimization of the concentration and their ratio of alginate, calcium ion and doxorubicin. The nanogel exhibited apparent pH-responsive release and subcellular delivery.
Collapse
Affiliation(s)
- Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
| | - Xiaoyang Xia
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
| | - Bo Yu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430073
| |
Collapse
|