1
|
Tayouri MI, Mousavi SR, Estaji S, Nemati Mahand S, Jahanmardi R, Arjmand M, Arnhold K, Khonakdar HA. Polystyrene/polyolefin elastomer/halloysite nanotubes blend nanocomposites: Morphology‐thermal degradation kinetics relationship. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Iman Tayouri
- Department of Polymer Engineering Science and Research Branch, Islamic Azad University Tehran Iran
| | - Seyed Rasoul Mousavi
- Nanomaterials and Polymer Nanocomposites Laboratory School of Engineering, University of British Columbia Kelowna British Columbia Canada
| | - Sara Estaji
- Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran
| | - Saba Nemati Mahand
- Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran
| | - Reza Jahanmardi
- Department of Polymer Engineering Science and Research Branch, Islamic Azad University Tehran Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory School of Engineering, University of British Columbia Kelowna British Columbia Canada
| | - Kerstin Arnhold
- Department of Polymer Processing Leibniz Institute of Polymer Research Dresden Dresden Germany
| | - Hossein Ali Khonakdar
- Department of Polymer Processing Iran Polymer and Petrochemical Institute Tehran Iran
- Department of Polymer Processing Leibniz Institute of Polymer Research Dresden Dresden Germany
| |
Collapse
|
2
|
Hu L, Han Y, Rong C, Wang X, Wang H, Li Y. Interfacial Engineering with Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11016-11027. [PMID: 35171566 DOI: 10.1021/acsami.1c24817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interfacial nanoparticle compatibilization (INC) strategy has opened up a promising avenue toward simultaneous functionalization and interfacial engineering of immiscible polymer blends. While the INC mechanism has been well developed recently, few investigations have focused on rigid nanoplatelets because of the inherent steric hindrance of the surface-grafted polymer chains. Herein, surface-modified rigid nanoplatelets have been incorporated into an immiscible poly(l-lactide) (PLLA)/poly(butylene succinate) (PBSU) blend. It is demonstrated that the strong interfacial adhesion between PLLA and PBSU phases is promoted via molecular entanglements of the grafted chains on the surface of nanoplatelets with the individual components. A refined phase morphology with improved mechanical properties can be achieved with the addition of 5 wt % modified Gibbsite nanoplatelets. It was further found that the stiffness of nanoplatelets can change the geometry of the interface significantly. It is, therefore, indicated that the simultaneous interface strengthening and interfacial curvature controlling of rigid nanoplatelets originate from the selective swelling/collapse of the in situ-formed PLLA and PBSU grafts within the corresponding phase at the interface. Such a mechanism is confirmed by the Monte Carlo simulations. This work provides new opportunities for the fabrication of advanced polymer blend nanocomposites.
Collapse
Affiliation(s)
- Lingmin Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yuanyuan Han
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, People's Republic of China
| | - Chenyan Rong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xiaokan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Rasselet D, Pucci MF, Caro-Bretelle AS, Lopez-Cuesta JM, Taguet A. Peculiar Morphologies Obtained for 80/20 PLA/PA11 Blend with Small Amounts of Fumed Silica. NANOMATERIALS 2021; 11:nano11071721. [PMID: 34209980 PMCID: PMC8308147 DOI: 10.3390/nano11071721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022]
Abstract
This work highlights the possibility of obtaining peculiar morphologies by adding fumed silica into 80/20 polylactic acid/polyamide11 (PLA/PA11) blends. Two kinds of fumed silica (A200 and trimethoxyoctylsilane modified R805 fumed silica) were dispersed (by twin-screw extrusion, TSE) at a weight amount of 5% in neat PLA, neat PA11 and a 80/20 PLA/PA11 blend. Thermal Gravimetric Analysis (TGA) was used to verify this 5 wt % amount. Oscillatory shear rheology tests were conducted on all the formulations: (1) on neat polymer nanocomposites (PLASi5, PLASiR5, PA11Si5, PA11SiR5); and (2) on polymer blend nanocomposites (PLA80Si5 and PLA80SiR5). Scanning Electron Microscope (SEM), Scanning Transmission Electron Microscope (STEM), Atomic Force Microscopy (AFM) characterizations and laser granulometry were conducted. Microscopic analysis performed on polymer blend nanocomposites evidenced a localization of A200 silica in the PA11 dispersed phase and R805 silica at the PLA/PA11 interface. Frequency sweep tests on neat polymer nanocomposites revealed a pronounced gel-like behavior for PLASi5 and PA11SiR5, evidencing a high dispersion of A200 in PLA and R805 in PA11. A yield behavior was also evidenced for both PLA80Si5 and PLA80SiR5 blends. For the blend nanocomposites, PA11 dispersed phases were elongated in the presence of A200 silica and a quasi-co-continuous morphology was observed for PLA80Si5, whereas PLA80SiR5 exhibits bridges of silica nanoparticles between the PA11 dispersed phases.
Collapse
Affiliation(s)
- Damien Rasselet
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, 30319 Ales, France; (D.R.); (J.-M.L.-C.)
| | - Monica Francesca Pucci
- LMGC, IMT Mines Ales, University Montpellier, CNRS, 30319 Ales, France; (M.F.P.); (A.-S.C.-B.)
| | | | - José-Marie Lopez-Cuesta
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, 30319 Ales, France; (D.R.); (J.-M.L.-C.)
| | - Aurélie Taguet
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, 30319 Ales, France; (D.R.); (J.-M.L.-C.)
- Correspondence: ; Tel.: +33-(0)466785687
| |
Collapse
|
4
|
Kesavan G, Chen S. Manganese oxide anchored on carbon modified halloysite nanotubes: An electrochemical platform for the determination of chloramphenicol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Kinetic and thermodynamic parameters guiding the localization of regioselectively modified kaolin platelets into a PS/PA6 co-continuous blend. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Eser N, Önal M, Çelik M, Pekdemir AD, Sarıkaya Y. Synthesis, characterization and some physicochemical properties of polypyrrole/halloysite composites. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1691447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nihal Eser
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Turkey
| | - Müşerref Önal
- Department of Chemistry, Faculty of Science, Ankara University, Tandoğan, Ankara, Turkey
| | - Meltem Çelik
- Department of Chemistry, Faculty of Science, Ankara University, Tandoğan, Ankara, Turkey
| | - A. Devrim Pekdemir
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Turkey
| | - Yüksel Sarıkaya
- Department of Chemistry, Faculty of Science, Ankara University, Tandoğan, Ankara, Turkey
| |
Collapse
|
7
|
Enhancement of the processing window and performance of polyamide 1010/bio‐based high‐density polyethylene blends by melt mixing with natural additives. POLYM INT 2019. [DOI: 10.1002/pi.5919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Yan X, Cayla A, Devaux E, Otazaghine B, Salaün F. Polypropylene/Poly(vinyl alcohol) Blends Compatibilized with Kaolinite Janus Hybrid Particles and Their Transformation into Fibers. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang Yan
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| | - Aurélie Cayla
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| | - Eric Devaux
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| | - Belkacem Otazaghine
- Centre des Matériaux des mines d’Alès (C2MA), IMT, Mines Alès, 6, Avenue de Clavières, F-30319 Alès Cedex, France
| | - Fabien Salaün
- GEMTEX − Laboratoire de Génie et Matériaux Textiles, ENSAIT, F-59000 Lille, France
| |
Collapse
|
9
|
Sahnoune M, Taguet A, Otazaghine B, Kaci M, Lopez-Cuesta JM. Fire retardancy effect of phosphorus-modified halloysite on polyamide-11 nanocomposites. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mohamed Sahnoune
- Laboratoire des Matériaux Polymères Avancés (LMPA); Université de Bejaia; 06000, Algeria
- Centre des Matériaux des Mines d'Alès (C2MA); IMT Mines d'Alès, 6 avenue de Clavières, 30319 Alès cedex France
| | - Aurélie Taguet
- Centre des Matériaux des Mines d'Alès (C2MA); IMT Mines d'Alès, 6 avenue de Clavières, 30319 Alès cedex France
| | - Belkacem Otazaghine
- Centre des Matériaux des Mines d'Alès (C2MA); IMT Mines d'Alès, 6 avenue de Clavières, 30319 Alès cedex France
| | - Mustapha Kaci
- Laboratoire des Matériaux Polymères Avancés (LMPA); Université de Bejaia; 06000, Algeria
| | - José-Marie Lopez-Cuesta
- Centre des Matériaux des Mines d'Alès (C2MA); IMT Mines d'Alès, 6 avenue de Clavières, 30319 Alès cedex France
| |
Collapse
|
10
|
Tharmavaram M, Pandey G, Rawtani D. Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications. Adv Colloid Interface Sci 2018; 261:82-101. [PMID: 30243667 DOI: 10.1016/j.cis.2018.09.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/01/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
Halloysite Nanotubes (HNTs) are clay minerals that possess unique chemical composition and a tubular structure due to which, they have recently emerged as a potential nanomaterial for umpteen applications. Over the years, the myriad applications of HNT have been realized through the surface modification of HNT, which involves the modification of nanotube's inner lumen and the outer surface with different functional compounds. The presence of aluminum and silica groups on the inner and outer surface of HNT enhance the interfacial relationship of the nanotube with different functional agents. Compounds such as alkalis, organosilanes, polymers, compounds of biological origin, surfactants and nanomaterials have been used for the modification of the inner lumen and the outer surface of HNT. The strategies change the constitution of HNT's surface either through micro-disintegration of the surface or by introducing additional functional groups on the surface, which further enhances their potential to be used as a flexible interface for different applications. In this review, the different surface modification strategies of the outer surface and the inner lumen that have been employed over the years have been discussed. The biological, environmental and catalytic applications of these surface modified HNTs with such versatile interface in the past two years have been elaborately discussed as well.
Collapse
Affiliation(s)
- Maithri Tharmavaram
- Institute of Research & Development, Gujarat Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Gaurav Pandey
- Institute of Research & Development, Gujarat Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Deepak Rawtani
- Institute of Research & Development, Gujarat Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India.
| |
Collapse
|
11
|
Effects of functionalized halloysite on morphology and properties of polyamide-11/SEBS-g-MA blends. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|