1
|
Fournier L, Rivera Mirabal DM, Hillmyer MA. Toward Sustainable Elastomers from the Grafting-Through Polymerization of Lactone-Containing Polyester Macromonomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lucie Fournier
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | | | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
2
|
Huang Y, Jin Y, Wang B, Tian H, Weng Y, Sun K, Men S. Preparation and characterization of compatibilized and toughened polylactic acid/cellulose acetate films by long‐chain hyperbranched polymers. J Appl Polym Sci 2021. [DOI: 10.1002/app.52097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yansong Huang
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Yujuan Jin
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Bo Wang
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Huafeng Tian
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Yunxuan Weng
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Kangdi Sun
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Shuang Men
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| |
Collapse
|
3
|
Compatibilization of Poly(Lactic Acid) (PLA)/Plasticized Cellulose Acetate Extruded Blends through the Addition of Reactively Extruded Comb Copolymers. Molecules 2021; 26:molecules26072006. [PMID: 33916068 PMCID: PMC8037935 DOI: 10.3390/molecules26072006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
In the perspective of producing a rigid renewable and environmentally friendly rigid packaging material, two comb-like copolymers of cellulose acetate (AC) and oligo(lactic acid) OLA, feeding different percentages of oligo(lactic acid) segments, were prepared by chemical synthesis in solvent or reactive extrusion in the melt, using a diepoxide as the coupling agent and were used as compatibilizers for poly(lactic acid)/plasticized cellulose acetate PLA/pAC blends. The blends were extruded at 230 °C or 197 °C and a similar compatibilizing behavior was observed for the different compatibilizers. The compatibilizer C1 containing 80 wt% of AC and 14 wt% of OLA resulted effective in compatibilization and it was easily obtained by reactive extrusion. Considering these results, different PLAX/pAC(100-X) compounds containing C1 as the compatibilizer were prepared by extrusion at 197 °C and tested in terms of their tensile and impact properties. Reference materials were the uncompatibilized corresponding blend (PLAX/pAC(100-X)) and the blend of PLA, at the same wt%, with C1. Significant increase in Young’s modulus and tensile strength were observed in the compatibilized blends, in dependence of their morphologic features, suggesting the achievement of an improved interfacial adhesion thanks to the occurred compatibilization.
Collapse
|
4
|
Wang F, Liu H, Li Y, Li Y, Ma Q, Zhang J, Hu X. Tunable Biodegradable Polylactide-Silk Fibroin Scaffolds Fabricated by a Solvent-Free Pressure-Controllable Foaming Technology. ACS APPLIED BIO MATERIALS 2020; 3:8795-8807. [PMID: 35019555 DOI: 10.1021/acsabm.0c01157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polylactide (PLA) and silk fibroin (SF) are biocompatible green macromolecular materials with tunable structures and properties. In this study, microporous PLA/SF composites were fabricated under different pressures by a green solid solvent-free foaming technology. Scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric (TG) analysis, and Fourier transform infrared (FTIR) spectroscopy were used to analyze the morphology, structure, and mechanical properties of the PLA/SF scaffolds. The crystalline, mobile amorphous phases and rigid amorphous phases in PLA/SF composites were calculated to further understand their structure-property relations. It was found that an increase in pore density and a decrease in pore size can be achieved by increasing the saturation pressure during the foaming process. In addition, changes in the microcellular structure provided PLA/SF scaffolds with better thermal stability, tunable biodegradation rates, and mechanical properties. FTIR and XRD analysis indicated strong hydrogen bonds were formed between PLA and SF molecules, which can be tuned by changing the foaming pressure. The composite scaffolds have good cell compatibility and are conducive to cell adhesion and growth, suggesting that PLA/SF microporous scaffolds could be used as three-dimensional (3-D) biomaterials with a wide range of applications.
Collapse
Affiliation(s)
- Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Hao Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Yingying Li
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Yajuan Li
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Qingyu Ma
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun Zhang
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States.,Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States.,Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
5
|
Ahmadlouydarab M, Chamkouri M, Chamkouri H. Compatibilization of immiscible polymer blends (R-PET/PP) by adding PP-g-MA as compatibilizer: analysis of phase morphology and mechanical properties. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03054-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Affiliation(s)
- John B Matson
- Virginia Tech Department of Chemistry and Macromolecules Innovation Institute, Blacksburg Virginia USA
| | - Matthew B Baker
- Maastricht University MERLN Institute for Technology‐Inspired Regenerative Medicine Maastricht The Netherlands
| |
Collapse
|