1
|
Elangwe CN, Samuilova EO, Uspenskaya MV, Olekhnovich RO. Review of self-healing polysaccharide-based hydrogels in tissue regeneration: Characterization methods and applications. Int J Biol Macromol 2025; 311:144149. [PMID: 40368207 DOI: 10.1016/j.ijbiomac.2025.144149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
The design of hydrogels with self-healing properties represents a significant advancement in the biomedical field. Polysaccharide-based self-healing hydrogels have garnered attention because of their unique attributes, including biocompatibility and biodegradability, as well as their ability to autonomously repair damage. Polysaccharide-based self-healing hydrogels consist mainly of crosslinked hydrophilic polymer networks that mimic the self-repair mechanisms of biological tissues. This review examines the self-healing mechanisms of polysaccharide-based hydrogels, evaluates their healing ability, and discusses characterization techniques to quantify their healing efficiency. In addition, the review highlights the advantages of self-healing hydrogels and discusses potential applications, particularly in the areas, such as medical dressings, drug delivery, and tissue regeneration. By addressing the challenges of self-healing hydrogels, these materials represent a promising frontier in the field of advanced biomaterials.
Collapse
Affiliation(s)
- Collins N Elangwe
- Chemical Engineering Center, ITMO University, Saint Petersburg, Russia; Saint Petersburg State University, Saint Petersburg, Russia.
| | | | - Mayya V Uspenskaya
- Saint Petersburg State University, Saint Petersburg, Russia; Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Roman O Olekhnovich
- Saint Petersburg State University, Saint Petersburg, Russia; Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
2
|
Wang Y, Zhou X, He L, Zhou X, Wang Y, Zhou P. Research Progress on Using Modified Hydrogel Coatings as Marine Antifouling Materials. Mar Drugs 2024; 22:546. [PMID: 39728121 PMCID: PMC11676044 DOI: 10.3390/md22120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
The adhesion of marine organisms to marine facilities negatively impacts human productivity. This phenomenon, known as marine fouling, constitutes a serious issue in the marine equipment industry. It increases resistance for ships and their structures, which, in turn, raises fuel consumption and reduces ship speed. To date, numerous antifouling strategies have been researched to combat marine biofouling. However, a multitude of these resources face long-term usability issues due to various limitations, such as low adhesion quality, elevated costs, and inefficacy. Hydrogels, exhibiting properties akin to the slime layer on the skin of many aquatic creatures, possess a low frictional coefficient and a high rate of water absorbency and are extensively utilized in the marine antifouling field. This review discusses the recent progress regarding the application of hydrogels as an important marine antifouling material in recent years. It introduces the structure, properties, and classification of hydrogels; summarizes the current research status of improved hydrogels in detail; and analyzes the improvement in their antifouling properties and the prospects for their application in marine antifouling.
Collapse
Affiliation(s)
- Ying Wang
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Xiaohong Zhou
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China;
| | - Lingyan He
- College of Mechanical and Electrical Engineering, Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China
| | - Xiangkai Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Yantian Wang
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Peijian Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| |
Collapse
|
3
|
Wen X, Zhao Q, Zhang W, Wu J, Shi Y, Wang K, Jiang J, Duan J. High mechanical, self-adhesive oxidized guar gum/chitosan hydrogel prepared at room temperature based on a nickel-urushiol catalytic system for wireless wearable sensors. Int J Biol Macromol 2024; 282:136899. [PMID: 39461638 DOI: 10.1016/j.ijbiomac.2024.136899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Recently, sensors constructed on the basis of hydrogel are playing a major role in health detection such as motion detection and breathing monitoring. However, the common hydrogels have poor mechanical properties, insufficient adhesion and complex preparation processes, which hinder the further use of such sensors. In this paper, the conductive hydrogel (P(AA-UH)-OGG-CS/NiCl2) composed of acrylic acid (AA), oxidized guar gum (OGG) and chitosan (CS) was prepared at room temperature through the dynamic redox reaction of nickel chloride (NiCl2) and urushiol (UH). In detail, the reduction group (phenolic hydroxyl) of UH and Ni2+/Ni3+ pair form a semi-quinone/quinone redox dynamic cycle system, allowing the hydrogel to quickly gel at room temperature for 3 min. The catechol group in UH also promotes the hydrogel to have a superior adhesion strength of 25.23 kPa to pig skin and a strong repeated adhesion performance. In addition, the dynamic Schiff base bond created by the interaction of OGG and CS elevated the tensile stress of the hydrogel to 67.54 kPa. After the hydrogel is assembled into the sensor, it has high sensitivity and high stability to different strains, and has great application prospects in the field of actual human health monitoring.
Collapse
Affiliation(s)
- Xiaolu Wen
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Qian Zhao
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Wenliang Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jingyu Wu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Yun Shi
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jiufang Duan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
4
|
Zheng L, Jiang K, Tian D, Wu W, Xie M, He H, Sun R. Facile Preparation of Tough, Puncture-Resistant Antibacterial Polyrotaxane Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37041-37051. [PMID: 38950151 DOI: 10.1021/acsami.4c07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Slide-ring hydrogels containing polyrotaxane structures have been widely developed, but current methods are more complex, in which modified cyclodextrins, capped polyrotaxanes, and multistep reactions are often needed. Here, a simple one-pot method dissolving the pseudopolyrotaxane (pPRX) in a mixture of acrylamide and boric acid to form a slide-ring hydrogel by UV light is used to construct a tough, puncture-resistant antibacterial polyrotaxane hydrogel. As a new dynamic ring cross-linking agent, boric acid effectively improves the mechanical properties of the hydrogel and involves the hydrogel with fracture toughness. The polyrotaxane hydrogel can withstand 1 MPa compression stress and maintain the morphology integrity, showing 197.5 mJ puncture energy under a sharp steel needle puncture. Meanwhile, its significant antibacterial properties endow the hydrogel with potential applications in the biomedical field.
Collapse
Affiliation(s)
- Lingji Zheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Kaixuan Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Dandan Tian
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Wenhui Wu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Hu He
- Hangzhou SynRx Therapeutics Biomedical Technology Co.,Ltd, 1390 Cangxing Road, Cangqian Street, Yuhang District, Hangzhou ,Zhejiang 311121, People's Republic of China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
5
|
Chen T, Li X, Wang Q, Li Y, Xu L, Yang Y, Qiao Y, Dai Y, Ke J, Wan H, Zhou S, Gao Z. A multifunctional Ag NPs/guar gum hydrogel as versatile platform for catalysts, antibacterial agents, and construction of oil-water separation interfaces. Int J Biol Macromol 2024; 270:132035. [PMID: 38705316 DOI: 10.1016/j.ijbiomac.2024.132035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
The frequently encountered wastewater contaminations, including soluble aromatic compound and dye pollutants, pathogenic bacteria, and insoluble oils, have resulted in significant environmental and human health issues. It poses a challenge to utilize identical materials for the treatment of complex wastewater. Herein, in this research, multifunctional Ag NPs/guar gum hybrid hydrogels were fabricated using a facile in situ reduction and self-crosslinking method for efficient remediation of complex wastewater. The Ag NPs/guar gum hybrid hydrogel showed remarkable remodeling, adhesive, and self-healing characteristics, which was favorable for its versatile applications. The combination of Ag NPs with the guar gum skeleton endowed the hybrid hydrogel with exceptional catalytic activity for reducing aromatic compounds and dye pollutants, as well as remarkable antibacterial efficacy against pathogenic bacteria. In addition, the Ag NPs/guar gum hybrid hydrogel could be employed to coat a variety of substrates, including cotton fabrics and stainless steel meshes. The hydrogel coated cotton fabrics and meshes presented superhydrophilicity/underwater superoleophobicity, excellent antifouling capacity, and outstanding recyclability, which could be successfully applied for efficient separation of oil-water mixtures. The findings of this work provide a feasible and cost-effective approach for the remediation of intricate wastewater.
Collapse
Affiliation(s)
- Teng Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Xin Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Qiyuan Wang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Ye Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Le Xu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yihang Yang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yunfan Qiao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yuchen Dai
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Jie Ke
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Hongri Wan
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Shuai Zhou
- College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhaojian Gao
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China.
| |
Collapse
|
6
|
Liu Y, Lin Y, Lin Y, Lin C, Lan G, Su Y, Hu F, Chang K, Chen V, Yeh Y, Chen T, Yu J. Injectable, Antioxidative, and Tissue-Adhesive Nanocomposite Hydrogel as a Potential Treatment for Inner Retina Injuries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308635. [PMID: 38233151 PMCID: PMC10953571 DOI: 10.1002/advs.202308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Reactive oxygen species (ROS) have been recognized as prevalent contributors to the development of inner retinal injuries including optic neuropathies such as glaucoma, non-arteritic anterior ischemic optic neuropathy, traumatic optic neuropathy, and Leber hereditary optic neuropathy, among others. This underscores the pivotal significance of oxidative stress in the damage inflicted upon retinal tissue. To combat ROS-related challenges, this study focuses on creating an injectable and tissue-adhesive hydrogel with tailored antioxidant properties for retinal applications. GelCA, a gelatin-modified hydrogel with photo-crosslinkable and injectable properties, is developed. To enhance its antioxidant capabilities, curcumin-loaded polydopamine nanoparticles (Cur@PDA NPs) are incorporated into the GelCA matrix, resulting in a multifunctional nanocomposite hydrogel referred to as Cur@PDA@GelCA. This hydrogel exhibits excellent biocompatibility in both in vitro and in vivo assessments, along with enhanced tissue adhesion facilitated by NPs in an in vivo model. Importantly, Cur@PDA@GelCA demonstrates the potential to mitigate oxidative stress when administered via intravitreal injection in retinal injury models such as the optic nerve crush model. These findings underscore its promise in advancing retinal tissue engineering and providing an innovative strategy for acute neuroprotection in the context of inner retinal injuries.
Collapse
Affiliation(s)
- Yi‐Chen Liu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Ke Lin
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
| | - Yu‐Ting Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Che‐Wei Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Guan‐Yu Lan
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yu‐Chia Su
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Fung‐Rong Hu
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
| | - Kai‐Hsiang Chang
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Vincent Chen
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Cheun Yeh
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Ta‐Ching Chen
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
- Center of Frontier MedicineNational Taiwan University HospitalTaipei100225Taiwan
| | - Jiashing Yu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
7
|
Li J, Zhai YN, Xu JP, Zhu XY, Yang HR, Che HJ, Liu CK, Qu JB. An injectable collagen peptide-based hydrogel with desirable antibacterial, self-healing and wound-healing properties based on multiple-dynamic crosslinking. Int J Biol Macromol 2024; 259:129006. [PMID: 38176492 DOI: 10.1016/j.ijbiomac.2023.129006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Conventional collagen-based hydrogels as wound dressing materials are usually lack of antibacterial activity and easily broken when encountering external forces. In this work, we developed a collagen peptide-based hydrogel as a wound dressing, which was composed of adipic acid dihydrazide functionalized collagen peptide (Col-ADH), oxidized dextran (ODex), polyvinyl alcohol (PVA) and borax via multiple-dynamic reversible bonds (acylhydrazone, amine, borate ester and hydrogen bonds). The injectable hydrogel exhibited satisfactory self-healing ability, antibacterial activity, mechanical strength, as well as good biocompatibility and biodegradability. In vivo experiments demonstrated the rapid hemostasis, accelerated cell migration, and promoted wound healing capacities of the hydrogel. These results indicate that the multifunctional collagen peptide-based hydrogel has great potentials in the field of wound dressings.
Collapse
Affiliation(s)
- Jing Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yong-Nian Zhai
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Jing-Ping Xu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiao-Yun Zhu
- Qingdao Kehai Jiantang Biology Co., Ltd, Qingdao 266580, PR China
| | - Hao-Ran Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Huan-Jie Che
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Cheng-Kun Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Jian-Bo Qu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
8
|
Ganeson K, Tan Xue May C, Abdullah AAA, Ramakrishna S, Vigneswari S. Advantages and Prospective Implications of Smart Materials in Tissue Engineering: Piezoelectric, Shape Memory, and Hydrogels. Pharmaceutics 2023; 15:2356. [PMID: 37765324 PMCID: PMC10535616 DOI: 10.3390/pharmaceutics15092356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional biomaterial is frequently used in the biomedical sector for various therapies, imaging, treatment, and theranostic functions. However, their properties are fixed to meet certain applications. Smart materials respond in a controllable and reversible way, modifying some of their properties because of external stimuli. However, protein-based smart materials allow modular protein domains with different functionalities and responsive behaviours to be easily combined. Wherein, these "smart" behaviours can be tuned by amino acid identity and sequence. This review aims to give an insight into the design of smart materials, mainly protein-based piezoelectric materials, shape-memory materials, and hydrogels, as well as highlight the current progress and challenges of protein-based smart materials in tissue engineering. These materials have demonstrated outstanding regeneration of neural, skin, cartilage, bone, and cardiac tissues with great stimuli-responsive properties, biocompatibility, biodegradability, and biofunctionality.
Collapse
Affiliation(s)
- Keisheni Ganeson
- Institute of Climate Adaptation and Marine Biotechnolgy (ICAMB), Kuala Nerus 21030, Terengganu, Malaysia;
| | - Cindy Tan Xue May
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Amirul Al Ashraf Abdullah
- School of Biological Sciences, Universiti Sains Malaysia, Bayan Lepas 11800, Penang, Malaysia;
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Gelugor 11700, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11800, Penang, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Sevakumaran Vigneswari
- Institute of Climate Adaptation and Marine Biotechnolgy (ICAMB), Kuala Nerus 21030, Terengganu, Malaysia;
| |
Collapse
|
9
|
Ling Q, Fan X, Ling M, Liu J, Zhao L, Gu H. Collagen-Based Organohydrogel Strain Sensor with Self-Healing and Adhesive Properties for Detecting Human Motion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12350-12362. [PMID: 36826788 DOI: 10.1021/acsami.2c21566] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conductive hydrogels are ideal for flexible sensors, but it is still a challenge to produce such hydrogels with combined toughness, self-adhesion, self-healing, anti-freezing, moisturizing, and biocompatibility properties. Herein, inspired by natural skin, a highly stretchable, strain-sensitive, and multi-environmental stable collagen-based conductive organohydrogel was constructed by using collagen (Col), acrylic acid, dialdehyde carboxymethyl cellulose, 1,3-propylene glycol, and AlCl3. The resulting organohydrogel exhibited excellent tensile (strain >800%), repeatable adhesion (>10 times), self-healing [self-healing efficiency (SHE) ≈ 100%], anti-freezing (-60 °C), moisturizing (>20 d), and biocompatible properties. This organohydrogel also possessed good electrical conductivity (σ = 3.4 S/m) and strain-sensitive properties [GF (gauge factor) = 13.65 with the maximal strain of 400%]. Notably, the organohydrogel had a considerable low-temperature self-healing performance (SHE = 88% at -24 °C) and rapid underwater self-healing property (SHE = 92%, self-healing time <20 min). This type of strain sensor could not only accurately and continuously monitor the large-scale motions of the human body but also provide an accurate response to the human tiny motions. This work not only proposes a development strategy for a multifunctional conductive organohydrogel with multiple environmental stability but also provides potential research value for the construction of biomimetic electronic skin.
Collapse
Affiliation(s)
- Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Xin Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Meijun Ling
- School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
| | - Jiachang Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Song C, You Y, Wen C, Fu Y, Yang J, Zhao J, Song S. Characterization and Gel Properties of Low-Molecular-Weight Carrageenans Prepared by Photocatalytic Degradation. Polymers (Basel) 2023; 15:polym15030602. [PMID: 36771902 PMCID: PMC9920076 DOI: 10.3390/polym15030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Low-molecular-weight carrageenan has attracted great interest because it shows advantages in solubility, absorption efficiency, and bioavailability compared to original carrageenan. However more environment-friendly and efficient methods to prepare low-molecular-weight carrageenan are still in great need. In the present study, a photocatalytic degradation method with only TiO2 has been developed and it could decrease the average molecular weight of κ-carrageenan to 4 kDa within 6 h. The comparison of the chemical compositions of the degradation products with those of carrageenan by FT-IR, NMR, etc., indicates no obvious removement of sulfate group, which is essential for bioactivities. Then 20 carrageenan oligosaccharides in the degradation products were identified by HPLC-MSn, and 75% of them possessed AnGal or its decarbonylated derivative at their reducing end, indicating that photocatalysis is preferential to break the glycosidic bond of AnGal. Moreover, the analysis results rheology and Cryo-SEM demonstrated that the gel property decreased gradually. Therefore, the present study demonstrated that the photocatalytic method with TiO2 as the only catalyst has the potential to prepare low-molecular-weight carrageenan with high sulfation degree and low viscosity, and it also proposed the degradation rules after characterizing the degradation products. Thus, the present study provides an effective green method for the degradation of carrageenan.
Collapse
Affiliation(s)
- Chen Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Ying You
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Yinghuan Fu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingfeng Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Jun Zhao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|
11
|
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
12
|
Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2069-2106. [PMID: 35451829 DOI: 10.1021/acsabm.2c00035] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes. In addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/growth factors and/or antimicrobial agents to the target wound site. In this review, we report recent advancements in biomaterials-based regenerative strategies that augment the skin tissue wound healing process. In conjunction with other medical sciences, designing nanoengineered biomaterials is gaining significant attention for providing numerous functionalities to trigger wound repair. In this regard, we highlight the advent of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management. Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound healing with no scar tissue formation.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deepa Garg
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Abhay Sachdev
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ishita Matai
- Department of Biotechnology, School of Biological Sciences, Amity University Punjab, Mohali 140306, India
| |
Collapse
|
13
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
14
|
Chinh NT, Trang TDM, Dung HT, Lu LT, Dung NT, Quyen NTC, Hong PT, Le VTT, Mao CV, Hoang T. A Ternary Biocomposite Based on Modified Fish Scale Collagen and Ginsenoside Rb1: Preparation, Properties and Bioactivities. POLYM INT 2022. [DOI: 10.1002/pi.6389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nguyen Thuy Chinh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Ha Noi 100000 Vietnam
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Tran Do Mai Trang
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Hoang Tran Dung
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Le Trong Lu
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Nguyen Tien Dung
- Faculty of Chemistry Hanoi National University of Education, 136 Xuan Thuy, Cau Giay Ha Noi 100000 Vietnam
| | - Ngo Thi Cam Quyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Ha Noi 100000 Vietnam
- Institute of Environmental Sciences Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Pham Thi Hong
- Faculty of Chemistry Hanoi National University of Education, 136 Xuan Thuy, Cau Giay Ha Noi 100000 Vietnam
| | - Vu Thi Thu Le
- Thai Nguyen University of Agriculture and Forestry, Quyet Thang Thai Nguyen 250000 Vietnam
| | - Can Van Mao
- Vietnam Military Medical University, 160 Phung Hung, Phuc La, Ha Dong Hanoi 100000 Vietnam
| | - Thai Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Ha Noi 100000 Vietnam
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| |
Collapse
|
15
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Huang X, Tang L, Xu L, Zhang Y, Li G, Peng W, Guo X, Zhou L, Liu C, Shen XC. NIR-II Light-Modulated Injectable Self-Healing Hydrogel for Synergistic Photothermal/Chemodynamic/Chemo-therapy of Melanoma and Wound Healing Promotion. J Mater Chem B 2022; 10:7717-7731. [DOI: 10.1039/d2tb00923d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an injectable multifunctional hydrogel with tumor therapy, antibacterial treatment and wound healing properties is essential for simultaneous eradicating melanoma and promoting wound healing of tumor-initiated skin defects....
Collapse
|
17
|
Sahajpal K, Sharma S, Shekhar S, Kumar A, Meena MK, Bhagi AK, Sharma B. Dynamic Protein and Polypeptide Hydrogels Based on Schiff Base Co-assembly for Biomedicine. J Mater Chem B 2022; 10:3173-3198. [DOI: 10.1039/d2tb00077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive hydrogels are promising building blocks for biomedical devices, attributable to their excellent hydrophilicity, biocompatibility, and dynamic responsiveness to temperature, light, pH, and water content. Although hydrogels find interesting applications...
Collapse
|
18
|
Luo X, Liu Y, Zheng C, Huo Q, Liu X. Development of novel hyaluronic acid/human-like collagen bio-composite membranes: A facile "surface modification-assembly" approach. Int J Biol Macromol 2021; 193:378-386. [PMID: 34699897 DOI: 10.1016/j.ijbiomac.2021.10.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
The merits of hyaluronic acid (HA) as a representative biological carbohydrate polymers especially in bioactivity and tailorability makes it ideal building block for the engineering of tissue engineering scaffolds. HA-based bio-composites integrate the characteristics of multi-component materials, possessing versatility and further improving the therapeutic efficacy. Human like collagen (HLC), which is hydrophilic, biomimetic, and bio-safe, with human tissue-derived collagen biofunction, has attracted extensive attention worldwide. Herein, we developed a novel method for HA/HLC bio-composite membranes preparation, comprising one-step surface modification-assembly process by which the HLC self-assembles are simultaneously loaded on the oxidized-modified HA (oxi-HA) from the surface/interface micro-scale. Comprehensive material characterizations and in vitro/in vivo biostudies proved that the HLC/oxi-HA composite membranes exhibited significantly enhanced biological activity, hemostatic performances, and wound healing properties compared to that of the pristine HA. The results of this study highlight the great potential of the prepared biomimetic HLC/oxi-HA bio-composites as a new generation of multifunctional HA-based wound-healing materials.
Collapse
Affiliation(s)
- Xiaomin Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China.
| | - Ying Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| | - Chi Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| | - Qianqian Huo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| | - Xinhua Liu
- Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China.
| |
Collapse
|
19
|
Devi V. K. A, Shyam R, Palaniappan A, Jaiswal AK, Oh TH, Nathanael AJ. Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Polymers (Basel) 2021; 13:3782. [PMID: 34771338 PMCID: PMC8587783 DOI: 10.3390/polym13213782] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Polymeric hydrogels are widely explored materials for biomedical applications. However, they have inherent limitations like poor resistance to stimuli and low mechanical strength. This drawback of hydrogels gave rise to ''smart self-healing hydrogels'' which autonomously repair themselves when ruptured or traumatized. It is superior in terms of durability and stability due to its capacity to reform its shape, injectability, and stretchability thereby regaining back the original mechanical property. This review focuses on various self-healing mechanisms (covalent and non-covalent interactions) of these hydrogels, methods used to evaluate their self-healing properties, and their applications in wound healing, drug delivery, cell encapsulation, and tissue engineering systems. Furthermore, composite materials are used to enhance the hydrogel's mechanical properties. Hence, findings of research with various composite materials are briefly discussed in order to emphasize the healing capacity of such hydrogels. Additionally, various methods to evaluate the self-healing properties of hydrogels and their recent advancements towards 3D bioprinting are also reviewed. The review is concluded by proposing several pertinent challenges encountered at present as well as some prominent future perspectives.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Rohin Shyam
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunkumar Palaniappan
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Arputharaj Joseph Nathanael
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| |
Collapse
|
20
|
Liu C, Lei F, Li P, Wang K, Jiang J. A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax. Int J Biol Macromol 2021; 182:1179-1191. [PMID: 33895176 DOI: 10.1016/j.ijbiomac.2021.04.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Polysaccharides-based hydrogel has many advantages such as biocompatibility, self-repair property, and biodegradability. It has been widely applied in various fields and has attracted great attention of researchers. The natural polysaccharides involved in this review include fenugreek gum, guar gum, locust bean gum, gellan gum, sodium alginate, agarose, and konjac glucomannan etc. Borax is a highly effective crosslinking agent for cis-ortho-hydroxyl polysaccharides. This paper focused on the synthesis mechanism, functional additives, characteristics, and applications of borax crosslinked cis-ortho-hydroxyl polysaccharides hydrogels (BHs). Moreover, the factors affecting BHs performance such as temperature, pH, and media were analyzed. Its mechanical and self-repair properties are enhanced by the dynamic and reversible borate/di-diol, which play a significant role in sensors, biomedicine, and tissue engineering. This review summarizes the research progress of BHs for the first time. Additionally, hoping to contribute to the development of this field, the review analyzes the correlation of performance through the SPSS 26 software.
Collapse
Affiliation(s)
- Chuanjie Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Pengfei Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
21
|
Dzhardimalieva GI, Yadav BC, Kudaibergenov SE, Uflyand IE. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers (Basel) 2020; 12:E2594. [PMID: 33158271 PMCID: PMC7694280 DOI: 10.3390/polym12112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) as a revolutionary system for harvesting mechanical energy have demonstrated high vitality and great advantage, which open up great prospects for their application in various areas of the society of the future. The past few years have seen exponential growth in many new classes of self-healing polymers (SHPs) for TENGs. This review presents and evaluates the SHP range for TENGs, and also attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Among the most widely used SHPs for TENGs, the analysis of non-covalent (hydrogen bond, metal-ligand bond), covalent (imine bond, disulfide bond, borate bond) and multiple bond-based SHPs in TENGs has been performed. Particular attention is paid to the use of SHPs with shape memory as components of TENGs. Finally, the problems and prospects for the development of SHPs for TENGs are outlined.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia;
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan;
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|