1
|
Villegas-Valencia M, Stark MR, Seger M, Wellman GB, Overmans S, Lammers PJ, Rader SD, Lauersen KJ. A rapid CAT transformation protocol and nuclear transgene expression tools for metabolic engineering in Cyanidioschyzon merolae 10D. N Biotechnol 2025; 85:39-51. [PMID: 39638031 DOI: 10.1016/j.nbt.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The eukaryotic red alga Cyanidioschyzon merolae 10D is an emerging algal host for synthetic biology and metabolic engineering. Its small nuclear genome (16.5 Mb; 4775 genes), low intron content (39), stable transgene expression, and capacity for homologous recombination into its nuclear genome make it ideal for genetic and metabolic engineering endeavors. Here, we present an optimized transformation and selection protocol, which yields single chloramphenicol-resistant transformants in under two weeks. Transformation dynamics and a synthetic modular plasmid toolkit are reported, including several new fluorescent reporters. Techniques for fluorescence reporter imaging and analysis at different scales are presented to facilitate high-throughput screening of C. merolae transformants. We use this plasmid toolkit to overexpress the Ipomoea batatas isoprene synthase and demonstrate the dynamics of engineered volatile isoprene production during different light regimes using multi-port headspace analysis coupled to parallel photobioreactors. This work seeks to promote C. merolae as an algal system for metabolic engineering and future sustainable biotechnological production.
Collapse
Affiliation(s)
- Melany Villegas-Valencia
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Martha R Stark
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, Canada
| | - Mark Seger
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, United States
| | - Gordon B Wellman
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sebastian Overmans
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peter J Lammers
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, United States
| | - Stephen D Rader
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, Canada
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, United States.
| |
Collapse
|
2
|
Goold HD, Moseley JL, Lauersen KJ. The synthetic future of algal genomes. CELL GENOMICS 2024; 4:100505. [PMID: 38395701 PMCID: PMC10943592 DOI: 10.1016/j.xgen.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae. Efforts to redesign and rebuild entire genomes to create fit-for-purpose organisms currently being explored in heterotrophic prokaryotes and eukaryotic microbes could also be applied to photosynthetic algae. Future algal genome engineering will enhance yields of native products and permit the expression of complex biochemical pathways to produce novel metabolites from sustainable inputs. We present a historical perspective on advances in engineering algae, discuss the requisite genetic traits to enable algal genome optimization, take inspiration from whole-genome engineering efforts in other microbes for algal systems, and present candidate algal species in the context of these engineering goals.
Collapse
Affiliation(s)
- Hugh D Goold
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia; ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Phycoil Biotechnology International, Inc., Fremont, CA 94538, USA
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
3
|
Seger M, Mammadova F, Villegas-Valencia M, Bastos de Freitas B, Chang C, Isachsen I, Hemstreet H, Abualsaud F, Boring M, Lammers PJ, Lauersen KJ. Engineered ketocarotenoid biosynthesis in the polyextremophilic red microalga Cyanidioschyzon merolae 10D. Metab Eng Commun 2023; 17:e00226. [PMID: 37449053 PMCID: PMC10336515 DOI: 10.1016/j.mec.2023.e00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The polyextremophilic Cyanidiophyceae are eukaryotic red microalgae with promising biotechnological properties arising from their low pH and elevated temperature requirements which can minimize culture contamination at scale. Cyanidioschyzon merolae 10D is a cell wall deficient species with a fully sequenced genome that is amenable to nuclear transgene integration by targeted homologous recombination. C. merolae maintains a minimal carotenoid profile and here, we sought to determine its capacity for ketocarotenoid accumulation mediated by heterologous expression of a green algal β-carotene ketolase (BKT) and hydroxylase (CHYB). To achieve this, a synthetic transgene expression cassette system was built to integrate and express Chlamydomonas reinhardtii (Cr) sourced enzymes by fusing native C. merolae transcription, translation and chloroplast targeting signals to codon-optimized coding sequences. Chloramphenicol resistance was used to select for the integration of synthetic linear DNAs into a neutral site within the host genome. CrBKT expression caused accumulation of canthaxanthin and adonirubin as major carotenoids while co-expression of CrBKT with CrCHYB generated astaxanthin as the major carotenoid in C. merolae. Unlike green algae and plants, ketocarotenoid accumulation in C. merolae did not reduce total carotenoid contents, but chlorophyll a reduction was observed. Light intensity affected global ratios of all pigments but not individual pigment compositions and phycocyanin contents were not markedly different between parental strain and transformants. Continuous illumination was found to encourage biomass accumulation and all strains could be cultivated in simulated summer conditions from two different extreme desert environments. Our findings present the first example of carotenoid metabolic engineering in a red eukaryotic microalga and open the possibility for use of C. merolae 10D for simultaneous production of phycocyanin and ketocarotenoid pigments.
Collapse
Affiliation(s)
- Mark Seger
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Fakhriyya Mammadova
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Melany Villegas-Valencia
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bárbara Bastos de Freitas
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Clarissa Chang
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Iona Isachsen
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Haley Hemstreet
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Fatimah Abualsaud
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Malia Boring
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Peter J. Lammers
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
| | - Kyle J. Lauersen
- Arizona Center for Algae Technology and Innovation, Arizona State University, 7418 Innovation Way South, Mesa, AZ, 85212, United States
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Steensma AK, Shachar-Hill Y, Walker BJ. The carbon-concentrating mechanism of the extremophilic red microalga Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2023; 156:247-264. [PMID: 36780115 PMCID: PMC10154280 DOI: 10.1007/s11120-023-01000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
Cyanidioschyzon merolae is an extremophilic red microalga which grows in low-pH, high-temperature environments. The basis of C. merolae's environmental resilience is not fully characterized, including whether this alga uses a carbon-concentrating mechanism (CCM). To determine if C. merolae uses a CCM, we measured CO2 uptake parameters using an open-path infra-red gas analyzer and compared them to values expected in the absence of a CCM. These measurements and analysis indicated that C. merolae had the gas-exchange characteristics of a CCM-operating organism: low CO2 compensation point, high affinity for external CO2, and minimized rubisco oxygenation. The biomass δ13C of C. merolae was also consistent with a CCM. The apparent presence of a CCM in C. merolae suggests the use of an unusual mechanism for carbon concentration, as C. merolae is thought to lack a pyrenoid and gas-exchange measurements indicated that C. merolae primarily takes up inorganic carbon as carbon dioxide, rather than bicarbonate. We use homology to known CCM components to propose a model of a pH-gradient-based CCM, and we discuss how this CCM can be further investigated.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Life cycle and functional genomics of the unicellular red alga Galdieria for elucidating algal and plant evolution and industrial use. Proc Natl Acad Sci U S A 2022; 119:e2210665119. [PMID: 36194630 PMCID: PMC9565259 DOI: 10.1073/pnas.2210665119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sexual reproduction has not been observed in unicellular red algae and Glaucophyceae, early branching groups in Archaeplastida, in which red algae and Viridiplantae independently evolved multicellular sexual life cycles. The finding of sexual reproduction in the unicellular red alga Galdieria provides information on the missing link of life cycle evolution in Archaeplastida. In addition, the metabolic plasticity, the polyextremophilic features, a relatively small genome, transcriptome data for the diploid and haploid, and the genetic modification tools developed here provide a useful platform for understanding the evolution of Archaeplastida, photosynthesis, metabolism, and environmental adaptation. For biotechnological use of the information and tools of Galdieria, the newly found cell wall–less haploid makes cell disruption less energy/cost intensive than the cell-walled diploid. Sexual reproduction is widespread in eukaryotes; however, only asexual reproduction has been observed in unicellular red algae, including Galdieria, which branched early in Archaeplastida. Galdieria possesses a small genome; it is polyextremophile, grows either photoautotrophically, mixotrophically, or heterotrophically, and is being developed as an industrial source of vitamins and pigments because of its high biomass productivity. Here, we show that Galdieria exhibits a sexual life cycle, alternating between cell-walled diploid and cell wall–less haploid, and that both phases can proliferate asexually. The haploid can move over surfaces and undergo self-diploidization or generate heterozygous diploids through mating. Further, we prepared the whole genome and a comparative transcriptome dataset between the diploid and haploid and developed genetic tools for the stable gene expression, gene disruption, and selectable marker recycling system using the cell wall–less haploid. The BELL/KNOX and MADS-box transcription factors, which function in haploid-to-diploid transition and development in plants, are specifically expressed in the haploid and diploid, respectively, and are involved in the haploid-to-diploid transition in Galdieria, providing information on the missing link of the sexual life cycle evolution in Archaeplastida. Four actin genes are differently involved in motility of the haploid and cytokinesis in the diploid, both of which are myosin independent and likely reflect ancestral roles of actin. We have also generated photosynthesis-deficient mutants, such as blue-colored cells, which were depleted in chlorophyll and carotenoids, for industrial pigment production. These features of Galdieria facilitate the understanding of the evolution of algae and plants and the industrial use of microalgae.
Collapse
|
6
|
Stadnichuk IN, Tropin IV. Cyanidiales as Polyextreme Eukaryotes. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:472-487. [PMID: 35790381 DOI: 10.1134/s000629792205008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/28/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Cyanidiales were named enigmatic microalgae due to their unique polyextreme properties, considered for a very long time unattainable for eukaryotes. Cyanidiales mainly inhabit hot sulfuric springs with high acidity (pH 0-4), temperatures up to 56°C, and ability to survive in the presence of dissolved heavy metals. Owing to the minimal for eukaryotes genome size, Cyanidiales have become one of the most important research objects in plant cell physiology, biochemistry, molecular biology, phylogenomics, and evolutionary biology. They play an important role in studying many aspects of oxygenic photosynthesis and chloroplasts origin. The ability to survive in stressful habitats and the corresponding metabolic pathways were acquired by Cyanidiales from archaea and bacteria via horizontal gene transfer (HGT). Thus, the possibility of gene transfer from prokaryotes to eukaryotes was discovered, which was a new step in understanding of the origin of eukaryotic cell.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127726, Russia.
| | - Ivan V Tropin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Floridean Starch and Floridoside Metabolic Pathways of Neoporphyra haitanensis and Their Regulatory Mechanism under Continuous Darkness. Mar Drugs 2021; 19:md19120664. [PMID: 34940663 PMCID: PMC8703398 DOI: 10.3390/md19120664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Floridean starch and floridoside are the main storage carbohydrates of red algae. However, their complete metabolic pathways and the origin, function, and regulatory mechanism of their pathway genes have not been fully elucidated. In this study, we identified their metabolic pathway genes and analyzed the changes in related gene expression and metabolite content in Neoporphyra haitanensis under continuous dark conditions. Our results showed that genes from different sources, including eukaryotic hosts, cyanobacteria, and bacteria, were combined to construct floridean starch and floridoside metabolic pathways in N. haitanensis. Moreover, compared with those in the control, under continuous dark conditions, floridean starch biosynthesis genes and some degradation genes were significantly upregulated with no significant change in floridean starch content, whereas floridoside degradation genes were significantly upregulated with a significant decrease in floridoside content. This implies that floridean starch content is maintained but floridoside is consumed in N. haitanensis under dark conditions. This study elucidates the "floridean starch-floridoside" metabolic network and its gene origins in N. haitanensis for the first time.
Collapse
|
8
|
Miyagishima SY, Tanaka K. The Unicellular Red Alga Cyanidioschyzon merolae-The Simplest Model of a Photosynthetic Eukaryote. PLANT & CELL PHYSIOLOGY 2021; 62:926-941. [PMID: 33836072 PMCID: PMC8504449 DOI: 10.1093/pcp/pcab052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Several species of unicellular eukaryotic algae exhibit relatively simple genomic and cellular architecture. Laboratory cultures of these algae grow faster than plants and often provide homogeneous cellular populations exposed to an almost equal environment. These characteristics are ideal for conducting experiments at the cellular and subcellular levels. Many microalgal lineages have recently become genetically tractable, which have started to evoke new streams of studies. Among such algae, the unicellular red alga Cyanidioschyzon merolae is the simplest organism; it possesses the minimum number of membranous organelles, only 4,775 protein-coding genes in the nucleus, and its cell cycle progression can be highly synchronized with the diel cycle. These properties facilitate diverse omics analyses of cellular proliferation and structural analyses of the intracellular relationship among organelles. C. merolae cells lack a rigid cell wall and are thus relatively easily disrupted, facilitating biochemical analyses. Multiple chromosomal loci can be edited by highly efficient homologous recombination. The procedures for the inducible/repressive expression of a transgene or an endogenous gene in the nucleus and for chloroplast genome modification have also been developed. Here, we summarize the features and experimental techniques of C. merolae and provide examples of studies using this alga. From these studies, it is clear that C. merolae-either alone or in comparative and combinatory studies with other photosynthetic organisms-can provide significant insights into the biology of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| | - Kan Tanaka
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| |
Collapse
|
9
|
Maréchal E. Grand Challenges in Microalgae Domestication. FRONTIERS IN PLANT SCIENCE 2021; 12:764573. [PMID: 34630500 PMCID: PMC8495258 DOI: 10.3389/fpls.2021.764573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
|