1
|
He P, Cai Y, Wang Y, Wang Z, Lyu Y, Li T, Zhang X, Zhou S. Genetic Editing of Tomato Golgi-Localized Nucleotide Sugar Transporter 1.1 Promotes Immunity Against Phytophthora infestans. Genes (Basel) 2025; 16:470. [PMID: 40282430 PMCID: PMC12026973 DOI: 10.3390/genes16040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/06/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Functional alleles of host plant susceptibility genes (S genes) can exacerbate the severity of diseases by enhancing pathogen compatibility. Genetic editing of the targeted host S genes has demonstrated remarkable efficacy in conferring broad-spectrum resistance across multiple crop species. We have previously identified a Golgi-localized Nucleotide Sugar Transporter 1 homolog (SlGONST1.1) in the host plant Solanum lycopersicum as a susceptibility gene towards late blight caused by Phytophthora infestans. METHODS In this study, we performed a detailed characterization of tissue-specific and P. infestans-inducible expression patterns of this gene, and the subcellular localization of its encoded protein product. RESULTS Similar to phenotypes of two reported Slgonst1.1 edited lines, two newly generated genetically edited lines of SlGONST1.1 demonstrated enhanced resistance against P. infestans without obvious growth and developmental abnormality. Phytohormonal quantifications and reactive oxygen species measurements showed that an Slgonst1.1 line had lower constitutive abscisic acid contents and depleted reactive oxygen species burst induced by pathogen-associated molecular pattern. Further comparative transcriptomic analyses revealed that the expression of defense-related genes is disproportionally up-regulated in the Slgonst1.1 line. CONCLUSIONS In summary, our findings confirmed SlGONST1.1 as a functional host susceptibility gene towards late blight and shed light on the potential molecular mechanism underlying its function.
Collapse
Affiliation(s)
- Peize He
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (P.H.); (X.Z.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Y.C.); (Y.W.); (Z.W.); (Y.L.)
| | - Yanling Cai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Y.C.); (Y.W.); (Z.W.); (Y.L.)
| | - Yanzi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Y.C.); (Y.W.); (Z.W.); (Y.L.)
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Zhiqing Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Y.C.); (Y.W.); (Z.W.); (Y.L.)
| | - Yaqing Lyu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Y.C.); (Y.W.); (Z.W.); (Y.L.)
| | - Tao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xingtan Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (P.H.); (X.Z.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Y.C.); (Y.W.); (Z.W.); (Y.L.)
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Y.C.); (Y.W.); (Z.W.); (Y.L.)
| |
Collapse
|
2
|
Mittendorf J, Haslam TM, Herrfurth C, Esnay N, Boutté Y, Feussner I, Lipka V. Identification of INOSITOL PHOSPHORYLCERAMIDE SYNTHASE 2 (IPCS2) as a new rate-limiting component in Arabidopsis pathogen entry control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70159. [PMID: 40298354 DOI: 10.1111/tpj.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
INOSITOL PHOSPHORYLCERAMIDE SYNTHASE 2 (IPCS2) is involved in the biosynthesis of complex sphingolipids at the trans-Golgi network (TGN). Here, we demonstrate a role of IPCS2 in penetration resistance against non-adapted powdery mildew fungi. A novel ipcs2W205* mutant was recovered from a forward genetic screen for Arabidopsis plants with enhanced epidermal cell entry success of the non-adapted barley fungus Blumeria graminis f. sp. hordei (Bgh). A yeast complementation assay and a sphingolipidomic approach revealed that the ipcs2W205* mutant represents a knock-out and lacks IPCS2-specific enzymatic activity. Further mutant analyses suggested that IPCS2-derived glycosyl inositol phosphorylceramides (GIPCs) are required for cell entry control of non-adapted fungal intruders. Confocal laser scanning microscopy (CLSM) studies indicated that upon pathogen attack, IPCS2 remains at the TGN to produce GIPCs, while focal accumulation of the defense cargo PENETRATION 3 (PEN3) at Bgh penetration sites was reduced in the ipcs2W205* mutant background. Thus, we propose a model in which sorting events at the TGN are facilitated by complex sphingolipids, regulating polar secretion of PEN3 to host-pathogen contact sites to terminate fungal ingress.
Collapse
Affiliation(s)
- Josephine Mittendorf
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Goettingen, Goettingen, D-37077, Germany
| | - Tegan M Haslam
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, D-37077, Germany
| | - Nicolas Esnay
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, UMR5200 CNRS, Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, UMR5200 CNRS, Villenave d'Ornon, France
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, D-37077, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Goettingen, Goettingen, D-37077, Germany
- Central Microscopy Facility of the Faculty of Biology & Psychology, Georg-August-University Goettingen, Goettingen, 37077, Germany
| |
Collapse
|
3
|
Cheng Y, Sun S, Lou H, Dong Y, He H, Mei Q, Liu J. The ectomycorrhizal fungus Scleroderma bovista improves growth of hazelnut seedlings and plays a role in auxin signaling and transport. Front Microbiol 2024; 15:1431120. [PMID: 39171259 PMCID: PMC11335501 DOI: 10.3389/fmicb.2024.1431120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Scleroderma bovista can form symbiotic ectomycorrhizal fungi with hazel roots. The mechanism through which S. bovista promotes hazelnut growth remains unclear. Methods This study aimed to evaluate the effect of ectomycorrhizal fungus S. bovista on the growth and development of hazel roots and gene expression changes through comparative transcriptome analysis. Results After inoculation with S. bovista, the fungus symbiotically formed ectomycorrhiza with hazel roots. The fresh weights of the aboveground and underground parts of My treatment (inoculated with S. bovista and formed mycorrhiza) were much higher than those of the control, respectively. The length, project area, surface area, volume, forks, and diameter of the inoculated seedlings root were 1.13 to 2.48 times higher than those of the control. In the paired comparison, 3,265 upregulated and 1,916 downregulated genes were identified. The most significantly enriched Gene Ontology term for the upregulated Differentially Expressed Genes was GO:0005215 (transporter activity). Immunohistochemical analysis suggested that the expression levels of auxin and Auxin Response Factor9 were significantly increased by S. bovista after the formation of mycorrhizal fungi in hazelnut root tips. Discussion These results indicate that genes related to auxin biosynthesis, transport and signaling, and transport of nutrients may contribute to root development regulation in hazel ectomycorrhiza.
Collapse
|
4
|
Zhang Y, Sharma D, Liang Y, Downs N, Dolman F, Thorne K, Black IM, Pereira JH, Adams P, Scheller HV, O’Neill M, Urbanowicz B, Mortimer JC. Putative rhamnogalacturonan-II glycosyltransferase identified through callus gene editing which bypasses embryo lethality. PLANT PHYSIOLOGY 2024; 195:2551-2565. [PMID: 38739546 PMCID: PMC11288761 DOI: 10.1093/plphys/kiae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Rhamnogalacturonan II (RG-II) is a structurally complex and conserved domain of the pectin present in the primary cell walls of vascular plants. Borate cross-linking of RG-II is required for plants to grow and develop normally. Mutations that alter RG-II structure also affect cross-linking and are lethal or severely impair growth. Thus, few genes involved in RG-II synthesis have been identified. Here, we developed a method to generate viable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in callus tissue via CRISPR/Cas9-mediated gene editing. We combined this with a candidate gene approach to characterize the male gametophyte defective 2 (MGP2) gene that encodes a putative family GT29 glycosyltransferase. Plants homozygous for this mutation do not survive. We showed that in the callus mutant cell walls, RG-II does not cross-link normally because it lacks 3-deoxy-D-manno-octulosonic acid (Kdo) and thus cannot form the α-L-Rhap-(1→5)-α-D-kdop-(1→sidechain). We suggest that MGP2 encodes an inverting RG-II CMP-β-Kdo transferase (RCKT1). Our discovery provides further insight into the role of sidechains in RG-II dimerization. Our method also provides a viable strategy for further identifying proteins involved in the biosynthesis of RG-II.
Collapse
Affiliation(s)
- Yuan Zhang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepak Sharma
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yan Liang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nick Downs
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fleur Dolman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kristen Thorne
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jose Henrique Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Malcolm O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Smirnoff N, Wheeler GL. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2604-2630. [PMID: 38300237 PMCID: PMC11066809 DOI: 10.1093/jxb/erad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, Faculty of Health and Life Sciences, Exeter EX4 4QD, UK
| | | |
Collapse
|
6
|
Haslam TM, Herrfurth C, Feussner I. Diverse INOSITOL PHOSPHORYLCERAMIDE SYNTHASE mutant alleles of Physcomitrium patens offer new insight into complex sphingolipid metabolism. THE NEW PHYTOLOGIST 2024; 242:1189-1205. [PMID: 38523559 DOI: 10.1111/nph.19667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Sphingolipids are widespread, abundant, and essential lipids in plants and in other eukaryotes. Glycosyl inositol phosphorylceramides (GIPCs) are the most abundant class of plant sphingolipids, and are enriched in the plasma membrane of plant cells. They have been difficult to study due to lethal or pleiotropic mutant phenotypes. To overcome this, we developed a CRISPR/Cas9-based method for generating multiple and varied knockdown and knockout populations of mutants in a given gene of interest in the model moss Physcomitrium patens. This system is uniquely convenient due to the predominantly haploid state of the Physcomitrium life cycle, and totipotency of Physcomitrium protoplasts used for transformation. We used this approach to target the INOSITOL PHOSPHORYLCERAMIDE SYNTHASE (IPCS) gene family, which catalyzes the first, committed step in the synthesis of GIPCs. We isolated knockout single mutants and knockdown higher-order mutants showing a spectrum of deficiencies in GIPC content. Remarkably, we also identified two mutant alleles accumulating inositol phosphorylceramides, the direct products of IPCS activity, and provide our best explanation for this unexpected phenotype. Our approach is broadly applicable for studying essential genes and gene families, and for obtaining unusual lesions within a gene of interest.
Collapse
Affiliation(s)
- Tegan M Haslam
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, D-37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, D-37077, Germany
| |
Collapse
|
7
|
Haslam TM, Feussner I. Diversity in sphingolipid metabolism across land plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2785-2798. [PMID: 35560193 PMCID: PMC9113257 DOI: 10.1093/jxb/erab558] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 05/08/2023]
Abstract
Sphingolipids are essential metabolites found in all plant species. They are required for plasma membrane integrity, tolerance of and responses to biotic and abiotic stresses, and intracellular signalling. There is extensive diversity in the sphingolipid content of different plant species, and in the identities and roles of enzymes required for their processing. In this review, we survey results obtained from investigations of the classical genetic model Arabidopsis thaliana, from assorted dicots with less extensive genetic toolkits, from the model monocot Oryza sativa, and finally from the model bryophyte Physcomitrium patens. For each species or group, we first broadly summarize what is known about sphingolipid content. We then discuss the most insightful and puzzling features of modifications to the hydrophobic ceramides, and to the polar headgroups of complex sphingolipids. Altogether, these data can serve as a framework for our knowledge of sphingolipid metabolism across the plant kingdom. This chemical and metabolic heterogeneity underpins equally diverse functions. With greater availability of different tools for analytical measurements and genetic manipulation, our field is entering an exciting phase of expanding our knowledge of the biological functions of this persistently cryptic class of lipids.
Collapse
Affiliation(s)
- Tegan M Haslam
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany
| |
Collapse
|
8
|
Voiniciuc C. Modern mannan: a hemicellulose's journey. THE NEW PHYTOLOGIST 2022; 234:1175-1184. [PMID: 35285041 DOI: 10.1111/nph.18091] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Hemicellulosic polysaccharides built of β-1,4-linked mannose units have been found throughout the plant kingdom and have numerous industrial applications. Here, I review recent advances in the biosynthesis and modification of plant β-mannans. These matrix polymers can associate with cellulose bundles to impact the mechanical properties of plant fibers or biocomposites. In certain algae, mannan microfibrils even replace cellulose as the dominant structural component of the cell wall. Conversely, patterned galactoglucomannan found in Arabidopsis thaliana seed mucilage significantly modulates cell wall architecture and abiotic stress tolerance despite its relatively low content. I also discuss the subcellular requirements for β-mannan biosynthesis, the increasing number of carbohydrate-active enzymes involved in this process, and the players that continue to be puzzling. I discuss how cellulose synthase-like enzymes elongate (gluco)mannans in orthogonal hosts and highlight the discoveries of plant enzymes that add specific galactosyl or acetyl decorations. Hydrolytic enzymes such as endo-β-1,4-mannanases have recently been involved in a wide range of biological contexts including seed germination, wood formation, heavy metal tolerance, and defense responses. Synthetic biology tools now provide faster tracks to modulate the increasingly-relevant mannan structures for improved plant traits and bioproducts.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
9
|
Liu NJ, Hou LP, Bao JJ, Wang LJ, Chen XY. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. PLANT COMMUNICATIONS 2021; 2:100214. [PMID: 34746760 PMCID: PMC8553973 DOI: 10.1016/j.xplc.2021.100214] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 06/26/2021] [Indexed: 05/08/2023]
Abstract
Sphingolipids, which comprise membrane systems together with other lipids, are ubiquitous in cellular organisms. They show a high degree of diversity across plant species and vary in their structures, properties, and functions. Benefiting from the development of lipidomic techniques, over 300 plant sphingolipids have been identified. Generally divided into free long-chain bases (LCBs), ceramides, glycosylceramides (GlcCers) and glycosyl inositol phosphoceramides (GIPCs), plant sphingolipids exhibit organized aggregation within lipid membranes to form raft domains with sterols. Accumulating evidence has revealed that sphingolipids obey certain trafficking and distribution rules and confer unique properties to membranes. Functional studies using sphingolipid biosynthetic mutants demonstrate that sphingolipids participate in plant developmental regulation, stimulus sensing, and stress responses. Here, we present an updated metabolism/degradation map and summarize the structures of plant sphingolipids, review recent progress in understanding the functions of sphingolipids in plant development and stress responses, and review sphingolipid distribution and trafficking in plant cells. We also highlight some important challenges and issues that we may face during the process of studying sphingolipids.
Collapse
Affiliation(s)
- Ning-Jing Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- Corresponding author
| | - Li-Pan Hou
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing-Jing Bao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|