1
|
McEvoy SL, Grady PGS, Pauloski N, O'Neill RJ, Wegrzyn JL. Profiling genome-wide methylation in two maples: Fine-scale approaches to detection with nanopore technology. Evol Appl 2024; 17:e13669. [PMID: 38633133 PMCID: PMC11022628 DOI: 10.1111/eva.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 04/19/2024] Open
Abstract
DNA methylation is critical to the regulation of transposable elements and gene expression and can play an important role in the adaptation of stress response mechanisms in plants. Traditional methods of methylation quantification rely on bisulfite conversion that can compromise accuracy. Recent advances in long-read sequencing technologies allow for methylation detection in real time. The associated algorithms that interpret these modifications have evolved from strictly statistical approaches to Hidden Markov Models and, recently, deep learning approaches. Much of the existing software focuses on methylation in the CG context, but methylation in other contexts is important to quantify, as it is extensively leveraged in plants. Here, we present methylation profiles for two maple species across the full range of 5mC sequence contexts using Oxford Nanopore Technologies (ONT) long-reads. Hybrid and reference-guided assemblies were generated for two new Acer accessions: Acer negundo (box elder; 65x ONT and 111X Illumina) and Acer saccharum (sugar maple; 93x ONT and 148X Illumina). The ONT reads generated for these assemblies were re-basecalled, and methylation detection was conducted in a custom pipeline with the published Acer references (PacBio assemblies) and hybrid assemblies reported herein to generate four epigenomes. Examination of the transposable element landscape revealed the dominance of LTR Copia elements and patterns of methylation associated with different classes of TEs. Methylation distributions were examined at high resolution across gene and repeat density and described within the broader angiosperm context, and more narrowly in the context of gene family dynamics and candidate nutrient stress genes.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Patrick G. S. Grady
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Nicole Pauloski
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Rachel J. O'Neill
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
2
|
He X, Chen Y, Xia Y, Hong X, You H, Zhang R, Liang Z, Cui Q, Zhang S, Zhou M, Yang D. DNA methylation regulates biosynthesis of tanshinones and phenolic acids during growth of Salvia miltiorrhiza. PLANT PHYSIOLOGY 2024; 194:2086-2100. [PMID: 37879117 DOI: 10.1093/plphys/kiad573] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
DNA methylation plays a crucial role in the regulation of plant growth and the biosynthesis of secondary metabolites. Danshen (Salvia miltiorrhiza) is a valuable Chinese herbal medicine commonly used to treat cardiovascular diseases; its active ingredients are tanshinones and phenolic acids, which primarily accumulate in roots. Here, we conducted a targeted metabolic analysis of S. miltiorrhiza roots at 3 distinct growth stages: 40 d old (r40), 60 d old (r60), and 90 d old (r90). The contents of tanshinones (cryptotanshinone, tanshinone I, tanshinone IIA, and rosmariquinone) and phenolic acids (rosmarinic acid and salvianolic acid B) gradually increased during plant development. Whole-genome bisulfite sequencing and transcriptome sequencing of roots at the 3 growth stages revealed an increased level of DNA methylation in the CHH context (H represents A, T, or C) context at r90 compared with r40 and r60. Increased DNA methylation levels were associated with elevated expression of various genes linked to epigenetic regulations, including CHROMOMETHYLASE2 (SmCMT2), Decrease in DNA Methylation 1 (SmDDM1), Argonaute 4 (SmAGO4), and DOMAINS REARRANGED METHYLTRANSFERASE 1 (SmDRM1). Moreover, expression levels of many genes involved in tanshinone and salvianolic acid biosynthesis, such as copalyldiphosphate synthase 5 (SmCPS5), cytochrome P450-related enzyme (SmCYP71D464), geranylgeranyl diphosphate synthase (SmGGPPS1), geranyl diphosphate synthase (SmGPPS), hydroxyphenylpyruvate reductase (SmHPPR), and hydroxyphenylpyruvate dioxygenase (SmHPPD), were altered owing to hyper-methylation, indicating that DNA methylation plays an important role in regulating tanshinone and phenolic acid accumulation. Our data shed light on the epigenetic regulation of root growth and the biosynthesis of active ingredients in S. miltiorrhiza, providing crucial clues for further improvement of active compound production via molecular breeding in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xinyu He
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yiwen Chen
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuting Xia
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyu Hong
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huaqian You
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qi Cui
- Laboratory of Ornamental Plants, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, China
| |
Collapse
|
3
|
Chmielowska-Bąk J, Searle IR, Wakai TN, Arasimowicz-Jelonek M. The role of epigenetic and epitranscriptomic modifications in plants exposed to non-essential metals. FRONTIERS IN PLANT SCIENCE 2023; 14:1278185. [PMID: 38111878 PMCID: PMC10726048 DOI: 10.3389/fpls.2023.1278185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023]
Abstract
Contamination of the soil with non-essential metals and metalloids is a serious problem in many regions of the world. These non-essential metals and metalloids are toxic to all organisms impacting crop yields and human health. Crop plants exposed to high concentrations of these metals leads to perturbed mineral homeostasis, decreased photosynthesis efficiency, inhibited cell division, oxidative stress, genotoxic effects and subsequently hampered growth. Plants can activate epigenetic and epitranscriptomic mechanisms to maintain cellular and organism homeostasis. Epigenetic modifications include changes in the patterns of cytosine and adenine DNA base modifications, changes in cellular non-coding RNAs, and remodeling histone variants and covalent histone tail modifications. Some of these epigenetic changes have been shown to be long-lasting and may therefore contribute to stress memory and modulated stress tolerance in the progeny. In the emerging field of epitranscriptomics, defined as chemical, covalent modifications of ribonucleotides in cellular transcripts, epitranscriptomic modifications are postulated as more rapid modulators of gene expression. Although significant progress has been made in understanding the plant's epigenetic changes in response to biotic and abiotic stresses, a comprehensive review of the plant's epigenetic responses to metals is lacking. While the role of epitranscriptomics during plant developmental processes and stress responses are emerging, epitranscriptomic modifications in response to metals has not been reviewed. This article describes the impact of non-essential metals and metalloids (Cd, Pb, Hg, Al and As) on global and site-specific DNA methylation, histone tail modifications and epitranscriptomic modifications in plants.
Collapse
Affiliation(s)
- Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Iain Robert Searle
- Discipline of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Theophilus Nang Wakai
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Ding S, Zhang H, Zhou C, Bao Y, Xu X, Chen Y, Shen Z, Chen C. Transcriptomic, epigenomic and physiological comparisons reveal key factors for different manganese tolerances in three Chenopodium ambrosioides L. populations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107883. [PMID: 37442049 DOI: 10.1016/j.plaphy.2023.107883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Chenopodium ambrosioides is a manganese (Mn) hyperaccumulator that can be used for Mn-polluted soil phytoremediation. However, the mechanism of Mn tolerance of C. ambrosioides remains largely unknown. In this study, the key factors for Mn tolerance of C. ambrosioides was investigated from the aspects of DNA methylation pattern, gene expression regulation and physiological function. We found that the two genotypes of C. ambrosioides populations have differentiated tolerance to Mn stress (Mn-tolerant: CS and XC, Mn-sensitive: WH). Although there was no difference in Mn accumulation between two types under excess Mn, the biomass and photosynthetic systems were more severely inhibited in Mn-sensitive type, as well as suffering more serious oxidative damage. More differentially expressed genes (DEGs) were downregulated in the Mn-tolerant type, indicating that the Mn-tolerant type tends to inhibit gene expression to cope with Mn stress. DEGs related to metal transport, antioxidant system, phytohormone and transcription factors contribute to the tolerance of C. ambrosioides to Mn, and account for difference in Mn stress sensitivities between the Mn-sensitive and tolerant types. We also found that DNA methylation variation may help to cope with Mn stress. The global DNA methylation level in C. ambrosioides increased under Mn stress, especially in the Mn-sensitive type. Dozens of methylated loci were significantly associated with the Mn accumulation trait of C. ambrosioides, and some critical DEGs were regulated by DNA methylation. Our study comprehensively demonstrated the Mn tolerance mechanism of C. ambrosioides for the first time, and highlighted the roles of epigenetic modification in C. ambrosioides response to Mn stress. Our findings may contribute to elucidating the adaptation mechanism of hyperaccumulator to the heavy metal toxicity.
Collapse
Affiliation(s)
- Shifeng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Changwei Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiaohong Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
5
|
Methylation in the CHH Context Allows to Predict Recombination in Rice. Int J Mol Sci 2022; 23:ijms232012505. [PMID: 36293364 PMCID: PMC9604423 DOI: 10.3390/ijms232012505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
DNA methylation is the most studied epigenetic trait. It is considered a key factor in regulating plant development and physiology, and has been associated with the regulation of several genomic features, including transposon silencing, regulation of gene expression, and recombination rates. Nonetheless, understanding the relation between DNA methylation and recombination rates remains a challenge. This work explores the association between recombination rates and DNA methylation for two commercial rice varieties. The results show negative correlations between recombination rates and methylated cytosine counts for all contexts tested at the same time, and for CG and CHG contexts independently. In contrast, a positive correlation between recombination rates and methylated cytosine count is reported in CHH contexts. Similar behavior is observed when considering only methylated cytosines within genes, transposons, and retrotransposons. Moreover, it is shown that the centromere region strongly affects the relationship between recombination rates and methylation. Finally, machine learning regression models are applied to predict recombination using the count of methylated cytosines in the CHH context as the entrance feature. These findings shed light on the understanding of the recombination landscape of rice and represent a reference framework for future studies in rice breeding, genetics, and epigenetics.
Collapse
|