1
|
Harmeyer KM, South PF, Bishop B, Ogas J, Briggs SD. Immediate chromatin immunoprecipitation and on-bead quantitative PCR analysis: a versatile and rapid ChIP procedure. Nucleic Acids Res 2014; 43:e38. [PMID: 25539918 PMCID: PMC4381045 DOI: 10.1093/nar/gku1347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022] Open
Abstract
Genome-wide chromatin immunoprecipitation (ChIP) studies have brought significant insight into the genomic localization of chromatin-associated proteins and histone modifications. The large amount of data generated by these analyses, however, require approaches that enable rapid validation and analysis of biological relevance. Furthermore, there are still protein and modification targets that are difficult to detect using standard ChIP methods. To address these issues, we developed an immediate chromatin immunoprecipitation procedure which we call ZipChip. ZipChip significantly reduces the time and increases sensitivity allowing for rapid screening of multiple loci. Here we describe how ZipChIP enables detection of histone modifications (H3K4 mono- and trimethylation) and two yeast histone demethylases, Jhd2 and Rph1, which were previously difficult to detect using standard methods. Furthermore, we demonstrate the versatility of ZipChIP by analyzing the enrichment of the histone deacetylase Sir2 at heterochromatin in yeast and enrichment of the chromatin remodeler, PICKLE, at euchromatin in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kayla M Harmeyer
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Paul F South
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Brett Bishop
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Joe Ogas
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Scott D Briggs
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Kohzaki H. A proposal for clinical genetics (genetics in medicine) education for medical technologists and other health professionals in Japan. Front Public Health 2014; 2:128. [PMID: 25202688 PMCID: PMC4142599 DOI: 10.3389/fpubh.2014.00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022] Open
Abstract
Since the completion of the Human Genome Project, technology has developed markedly in fields such as medical genetics and genetic counseling in the medical arena. In particular, this technology has advanced the discovery of and ways of understanding various genes responsible for genetic diseases, and genetic polymorphisms thought to be associated with disease. Some have been implicated as factors in common lifestyle diseases and have increased the significance of genetic testing. In Japan, doctors and other health professionals, such as nurse and medical technologists have been engaged in genetic testing and genetic disease treatment. Chromosomal and gene aberrations were detected mainly by medical technologists. However, due to the nature of medical technologists who have to provide various clinical tests, such as blood test, pre-medical technology students are required to cover tremendous knowledge of different academic fields to pass the national exam. Therefore, the time allowed for such students to study chromosomal and gene analysis is quite limited. Moreover, they are forced to enter the medical setting without receiving sufficient training. Among them, only few medical technologists specialize in chromosomal and gene analysis. However, with the advancement of clinical genetics and development of chromosomal and gene analysis, conducting clinical practice is becoming more and more difficult for medical technologists who just passed the national exam. Also, doctors and other health professionals have not been able to keep up with service demands either. This paper attempts to address knowledge and skills gaps (especially clinical genetics, English, and ICT literacy) of medical technologists and we propose educational methods to prepare medical genetics professionals in Japan to meet these gaps.
Collapse
Affiliation(s)
- Hidetsugu Kohzaki
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Department of Molecular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Faculty of Allied Health Science, Yamato University, Suita, Japan
| |
Collapse
|
3
|
Ahmed FE. Mining the oncoproteome and studying molecular interactions for biomarker development by 2DE, ChIP and SPR technologies. Expert Rev Proteomics 2014; 5:469-96. [DOI: 10.1586/14789450.5.3.469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Parseghian MH. Hitchhiker antigens: Inconsistent ChIP results, questionable immunohistology data, and poor antibody performance may have a common factor. Biochem Cell Biol 2013; 91:378-94. [DOI: 10.1139/bcb-2013-0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Questionable data and poor antibody performance may have a common factor: antigens “hitchhiking” on the very antibodies designed to target them. Here I focus on histone hitchhikers and their antibodies, given the impact of chromatin immunoprecipitation on our understanding of DNA regulation. Caused by a lack of stringency during antibody purification, hitchhikers will impede important advances in chromatin research and therapeutics derived from that research, if similar circumstances in the study of lupus decades ago are any guide. Evidence of this phenomenon is reviewed, purification modifications for antibody manufacturing are suggested, and a histone hitchhiker detection procedure is provided.
Collapse
|
5
|
Abstract
The development of chromatin immunoprecipitation assays (ChIP) as a tool to examine the interactions between nuclear proteins and DNA has enhanced essentially our understanding of the dynamic association of transcription factors and chromatin modifiers with target DNA sequences. Still in vivo ChIP experiments of the central nervous system continue to represent a challenge given the considerable cellular and functional diversity, which makes the dissection of discrete circumscribed structures highly desirable. Tiny amounts of tissue can result, however, in insufficient quantities of starting material incompatible with many ChIP applications and lead to variable results. Here, we discuss the suitability of currently available ChIP protocols for in vivo ChIP experiments and present a new streamlined protocol that allows the processing of multiple samples with less time on hands.
Collapse
|
6
|
Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 2011; 21:2055-63. [PMID: 22169533 DOI: 10.1016/j.cub.2011.11.038] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/24/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Chromosomal DNA replication in eukaryotes initiates from multiple origins of replication, and because of this multiplicity, activation of replication origins is likely to be highly coordinated; origins fire at characteristic times, with some origins firing on average earlier (early-firing origins) and others later (late-firing origins) in the S phase of the budding yeast cell cycle. However, the molecular basis for such temporal regulation is poorly understood. RESULTS We show that origin association of the low-abundance replication proteins Sld3, Sld7, and Cdc45 is the key to determining the temporal order of origin firing. These proteins form a complex and associate with the early-firing origins in G1 phase in a manner that depends on Dbf4-dependent kinase (DDK), which is essential for the initiation of DNA replication. An increased dosage of Sld3, Sld7, and Cdc45 allows the late-firing origins to fire earlier in S phase. Additionally, an increased dosage of DDK also allows the late-firing origins to fire earlier. CONCLUSIONS The DDK-dependent limited association between origins and Sld3-Sld7-Cdc45 is a key step for determining the timing of origin firing.
Collapse
|
7
|
Mechetner L, Sood R, Nguyen V, Gagnon P, Parseghian MH. The effects of hitchhiker antigens co-eluting with affinity-purified research antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2583-94. [DOI: 10.1016/j.jchromb.2011.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 06/30/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022]
|
8
|
Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast. EMBO J 2011; 30:2019-30. [PMID: 21487389 DOI: 10.1038/emboj.2011.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/23/2011] [Indexed: 01/16/2023] Open
Abstract
Genetic screening of yeast for sld (synthetic lethality with dpb11) mutations has identified replication proteins, including Sld2, -3, and -5, and clarified the molecular mechanisms underlying eukaryotic chromosomal DNA replication. Here, we report a new replication protein, Sld7, identified by rescreening of sld mutations. Throughout the cell cycle, Sld7 forms a complex with Sld3, which associates with replication origins in a complex with Cdc45, binds to Dpb11 when phosphorylated by cyclin-dependent kinase, and dissociates from origins once DNA replication starts. However, Sld7 does not move with the replication fork. Sld7 binds to the nonessential N-terminal portion of Sld3 and reduces its affinity for Cdc45, a component of the replication fork. Although Sld7 is not essential for cell growth, its absence reduces the level of cellular Sld3, delays the dissociation from origins of GINS, a component of the replication fork, and slows S-phase progression. These results suggest that Sld7 is required for the proper function of Sld3 at the initiation of DNA replication.
Collapse
|
9
|
Abstract
The biological significance of interactions of nuclear proteins with DNA in the context of gene expression, cell differentiation, or disease has immensely been enhanced by the advent of chromatin immunoprecipitation (ChIP). ChIP is a technique whereby a protein of interest is selectively immunoprecipitated from a chromatin preparation to determine the DNA sequences associated with it. ChIP has been widely used to map the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin modifying enzymes on the genome or on a given locus. In spite of its power, ChIP has for a long time remained a cumbersome procedure requiring large numbers of cells. These limitations have sparked the development of modifications to shorten the procedure, simplify sample handling and make ChIP amenable to small numbers of cells. In addition, the combination of ChIP with DNA microarray and high-throughput sequencing technologies has in recent years enabled the profiling of histone modification, histone variants, and transcription factor occupancy on a genome-wide scale. This review highlights the variations on the theme of the ChIP assay, the various detection methods applied downstream of ChIP, and examples of their application.
Collapse
|
10
|
Abstract
The biological significance of interactions of nuclear proteins with DNA in the context of gene expression, cell differentiation, or disease has immensely been enhanced by the advent of chromatin immunoprecipitation (ChIP). ChIP is a technique whereby a protein of interest is selectively immunoprecipitated from a chromatin preparation to determine the DNA sequences associated with it. ChIP has been widely used to map the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin-modifying enzymes on the genome or on a given locus. In spite of its power, ChIP has for a long time remained a cumbersome procedure requiring large number of cells. These limitations have sparked the development of modifications to shorten the procedure, simplify the sample handling, and make the ChIP amenable to small number of cells. In addition, the combination of ChIP with DNA microarray, paired-end ditag, and high-throughput sequencing technologies has in recent years enabled the profiling of histone modifications and transcription factor occupancy on a genome-wide scale. This review highlights the variations on the theme of the ChIP assay, the various detection methods applied downstream of ChIP, and examples of their application.
Collapse
Affiliation(s)
- Philippe Collas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|