1
|
Sun S, Gong Y, Li D, Liu B, Yang Q, Wang M, Su W, Zhang X, Zhang L, Yu R, Li X. Vitreous proteomic insights into the pathogenesis of nonarteritic anterior ischemic optic neuropathy. Exp Eye Res 2025; 256:110407. [PMID: 40306398 DOI: 10.1016/j.exer.2025.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/22/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Non-arteritic anterior ischemic optic neuropathy (NAION) is a common cause of acute optic nerve injury and vision loss in older individuals. However, the pathogenesis of NAION remains poorly understood, and no treatment has conclusively demonstrated efficacy. This study aimed to explore and describe the proteome of the vitreous humor in eyes with NAION. Ten patients diagnosed with NAION and ten comparative controls diagnosed with idiopathic epiretinal membranes were enrolled in this study. The vitreous proteomes of both groups were analyzed using liquid chromatography-tandem mass spectrometry, and multiple reaction monitoring was performed to validate the target proteins. A total of 815 proteins were identified in both groups, of which 155 were common to both groups. Among these, 98 proteins were significantly upregulated and 57 proteins were downregulated in the NAION group compared to those in the controls. NAION is associated with the increased expression of proteins involved in hemostasis and metabolic pathways. Additionally, extracellular matrix (ECM) remodeling molecules were downregulated in the NAION vitreous, which likely reflects increased vitreous liquefaction and alterations in vitreous biomechanics. This study provides a comprehensive proteomic profile of the vitreous humor in eyes with NAION and highlights the dysregulation of hemostasis, metabolic pathways, and ECM remodeling. These findings enhance our understanding of the molecular mechanisms underlying NAION and may pave the way for the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shuo Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yi Gong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Dong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Shanxi Eye Hospital, Taiyuan, 030002, Shanxi Province, China
| | - Boshi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Qianhui Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Manqiao Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Wenqi Su
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Longli Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Rongguo Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
2
|
WU IH, CHAN SM, LIN CT. The neuroprotective effect of submicron and blended Lycium barbarum for experiment retinal ischemia and reperfusion injury in rats. J Vet Med Sci 2020; 82:1719-1728. [PMID: 32921657 PMCID: PMC7719877 DOI: 10.1292/jvms.19-0646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/24/2020] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate the neuroprotective potential of submicron (milled) and blended Lycium barbarum (LB) in glaucomatous retinal neuropathy using a rat model of high intraocular pressure (HIOP) induced retinal ischemia. The rats were treated with 500, 250, 100 mg/kg LB (submicron or blended form) orally once daily for 56 days respectively after 1 week of retinal ischemia induction. We conducted electroretinography (ERG), histopathological analysis in retina and antioxidative level assays, such as total glutathione (GSH (glutathione) + reduced glutathione) + GSSH (glutathione disulfide), catalase activity, SOD (superoxide dismutase) activity, and lipid peroxidant malondialdehyde (MDA) in the retina and plasma of test rats. The results indicated that the amplitudes of a and b wave of ERG were preserved in rats treated with submicron and blended LB groups, the best protective effect on ERG b wave amplitudes was observed at the dosage of 250 mg/kg of both forms of LB. Retinal thickness was best preserved, particularly significant in the retinal inner nuclear layer in submicron 250 mg/kg LB group. The levels of antioxidant GSSH+GSH, SOD and catalase activity in the retina were higher in blended 500 mg/kg and submicron 250 mg/kg groups than other groups, while the MDA level was lower in submicron LB groups than that in blended LB and non-LB IR group. In the plasma, there was no significant difference in the levels of GSSH+GSH and catalase activity between treated groups, but higher levels of SOD and lower levels of MDA were observed in 250 mg/kg submicron and 500 mg/kg submicron LB groups than the blended LB and non-LB IR groups. Generally better antioxidative effects were observed in the submicron LB than blended LB among treated groups, especially the 250 mg/kg submicron LB, providing good retinal neuroprotection by preserving retinal structure and function with improved antioxidative capacity. The submicron LB may have clinical implication as an adjuvant therapy of oxidative stress and retinal damage caused by HIOP induced retinal ischemia and reperfusion injury.
Collapse
Affiliation(s)
- I-Han WU
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Sze-Min CHAN
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Chung-Tien LIN
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
- Department of Ophthalmology, National Taiwan University Veterinary Hospital, Taipei 106, Taiwan
| |
Collapse
|
3
|
Cai R, Xue W, Liu S, Petersen RB, Huang K, Zheng L. Overexpression of glyceraldehyde 3-phosphate dehydrogenase prevents neurovascular degeneration after retinal injury. FASEB J 2015; 29:2749-58. [PMID: 25805836 DOI: 10.1096/fj.14-265801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
Ischemia and reperfusion (I/R) injury is a common cause of many vascular and neuronal diseases. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has been found down-regulated or dysfunctional in several tissues upon I/R injury. To investigate the role of GAPDH in retinal I/R injury-induced neurovascular degeneration, the injured retinas of GAPDH transgenic (Tg) mice and wild-type (WT) littermates were analyzed. I/R injury induced neurovascular degeneration, energy failure, DNA damage, and necroptosis in the retinas of WT mice. In contrast, the GAPDH Tg mice showed resistance to all of these injury-induced abnormalities. In addition, I/R-induced effects were further examined in a neuroblastoma cell line and an endothelial cell line, which were transfected with a vector encoding human GAPDH or a control vector. After I/R challenge, energy failure, DNA damage, and elevation of receptor-interacting serine/threonine-protein kinase (RIP) 1/3 were observed in the cells transfected with the control vector. However, overexpression of GAPDH in these cells prevented the injury-induced RIP3 up-regulation by restoring energy production and preventing DNA damage. Together, the protective role of GAPDH in retinal neurovascular degeneration after I/R injury provides a better understanding of the underlying mechanism of I/R injury and a potential therapeutic target to attenuate I/R injury-related diseases.
Collapse
Affiliation(s)
- Ruiqi Cai
- *College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China; Departments of Pathology, Neuroscience, and Neurology, Case Western Reserve University, Cleveland, Ohio, USA; and Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Weili Xue
- *College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China; Departments of Pathology, Neuroscience, and Neurology, Case Western Reserve University, Cleveland, Ohio, USA; and Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shanshan Liu
- *College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China; Departments of Pathology, Neuroscience, and Neurology, Case Western Reserve University, Cleveland, Ohio, USA; and Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Robert B Petersen
- *College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China; Departments of Pathology, Neuroscience, and Neurology, Case Western Reserve University, Cleveland, Ohio, USA; and Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Kun Huang
- *College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China; Departments of Pathology, Neuroscience, and Neurology, Case Western Reserve University, Cleveland, Ohio, USA; and Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ling Zheng
- *College of Life Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China; Departments of Pathology, Neuroscience, and Neurology, Case Western Reserve University, Cleveland, Ohio, USA; and Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
4
|
Tian H, Wang L, Cai R, Zheng L, Guo L. Identification of protein network alterations upon retinal ischemia-reperfusion injury by quantitative proteomics using a Rattus norvegicus model. PLoS One 2014; 9:e116453. [PMID: 25549249 PMCID: PMC4280217 DOI: 10.1371/journal.pone.0116453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/08/2014] [Indexed: 01/15/2023] Open
Abstract
Retinal ischemia is a common feature associated with several ocular diseases, including diabetic retinopathy. In this study, we investigated the effect of a retinal ischemia and reperfusion (I/R) injury on protein levels via a quantitative shotgun strategy using stable isotope dimethyl labeling combined with LC-MS/MS analysis. Based on the relative quantitation data of 1088 proteins, 234 proteins showed a greater than 1.5-fold change following I/R injury, 194 of which were up-regulated and 40 were down-regulated. Gene ontology analysis revealed that after I/R injury, there was an increase in the metabolic-process related proteins but a decline in cell communication, system process and transport-related proteins. A ribosome protein network and a secreted protein network consisting of many protease inhibitors were identified among the up-regulated proteins, despite a suppression of the mammalian target of rapamycin (mTOR) pathway following the I/R injury. A synaptic-related protein network was found to be significantly down-regulated, implicating a functional reduction of neurons following a retinal I/R injury. Our results provide new systems-biology clues for the study of retinal ischemia.
Collapse
Affiliation(s)
- Han Tian
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Leilei Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Ruiqi Cai
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LZ); (LG)
| | - Lin Guo
- College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LZ); (LG)
| |
Collapse
|
5
|
Zhao X, Sidoli S, Wang L, Wang W, Guo L, Jensen ON, Zheng L. Comparative Proteomic Analysis of Histone Post-translational Modifications upon Ischemia/Reperfusion-Induced Retinal Injury. J Proteome Res 2014; 13:2175-86. [DOI: 10.1021/pr500040a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaolu Zhao
- College
of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Simone Sidoli
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Leilei Wang
- College
of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wenjun Wang
- College
of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lin Guo
- College
of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ole N. Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ling Zheng
- College
of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
6
|
Chen YI, Lee YJ, Wilkie DA, Lin CT. Evaluation of potential topical and systemic neuroprotective agents for ocular hypertension-induced retinal ischemia-reperfusion injury. Vet Ophthalmol 2013; 17:432-42. [PMID: 24171811 DOI: 10.1111/vop.12105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate for drugs with superior neuroprotective efficacy and investigate their underlying mechanisms related to antioxidation. PROCEDURES Brinzolamide (1%), timolol (0.5%), minocycline (22 mg/kg), lidocaine (1.5 mg/kg), and methylprednisolone (30 mg/kg) were administered to Sprague-Dawley (SD) rats. The retina was evaluated by electroretinography and histological analysis. The antioxidative capacity of drugs was evaluated to clarify the underlying mechanism. The oxidant/antioxidant profiles of plasma, red blood cells, and retina were analyzed by lipid peroxidation (malondialdehyde) and by measuring the activities of antioxidants. Proteomic analysis was used to investigate the possible protective mechanisms of the drug against ischemia-reperfusion injury. RESULTS The results suggested that timolol, methylprednisolone, and minocycline protected retinal function. Methylprednisolone and minocycline possessed good antioxidative activity. Brinzolamide and lidocaine preserved the structural integrity of the retina, but not retinal function. CONCLUSION Methylprednisolone, minocycline, and timolol have potential acute or delayed benefit in retinal ischemia-reperfusion injury. Their neuroprotective actions depend at least partially on the ability to alleviate oxidative stress.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| | | | | | | |
Collapse
|
7
|
Wilson CH, Zeile S, Chataway T, Nieuwenhuijs VB, Padbury RTA, Barritt GJ. Increased expression of peroxiredoxin 1 and identification of a novel lipid‐metabolizing enzyme in the early phase of liver ischemia reperfusion injury. Proteomics 2011; 11:4385-96. [DOI: 10.1002/pmic.201100053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 12/25/2022]
Affiliation(s)
- Claire H. Wilson
- Departments of Medical Biochemistry and Physiology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Susanne Zeile
- Departments of Medical Biochemistry and Physiology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Tim Chataway
- Departments of Medical Biochemistry and Physiology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | | | - Robert T. A. Padbury
- The HPB and Liver Transplant Unit, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Greg J. Barritt
- Departments of Medical Biochemistry and Physiology, Flinders Medical Centre and School of Medicine, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One 2011; 6:e23194. [PMID: 21858029 PMCID: PMC3153496 DOI: 10.1371/journal.pone.0023194] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/08/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Neuron loss, glial activation and vascular degeneration are common sequelae of ischemia-reperfusion (I/R) injury in ocular diseases. The present study was conducted to explore the ability of curcumin to inhibit retinal I/R injury, and to investigate underlying mechanisms of the drug effects. METHODOLOGY/PRINCIPAL FINDINGS Different dosages of curcumin were administered. I/R injury was induced by elevating the intraocular pressure for 60 min followed by reperfusion. Cell bodies, brn3a stained cells and TUNEL positive apoptotic cells in the ganglion cell layer (GCL) were quantitated, and the number of degenerate capillaries was assessed. The activation of glial cells was measured by the expression level of GFAP. Signaling pathways including IKK-IκBα, JAK-STAT1/3, ERK/MAPK and the expression levels of β-tubulin III and MCP-1 were measured by western blot analysis. Pre-treatment using 0.01%-0.25% curcumin in diets significantly inhibited I/R-induced cell loss in GCL. 0.05% curcumin pre-treatment inhibited I/R-induced degeneration of retinal capillaries, TUNEL-positive apoptotic cell death in the GCL, brn3a stained cell loss, the I/R-induced up-regulation of MCP-1, IKKα, p-IκBα and p-STAT3 (Tyr), and down-regulation of β-tubulin III. This dose showed no effect on injury-induced GFAP overexpression. Moreover, 0.05% curcumin administered 2 days after the injury also showed a vaso-protective effect. CONCLUSIONS/SIGNIFICANCE Curcumin protects retinal neurons and microvessels against I/R injury. The beneficial effects of curcumin on neurovascular degeneration may occur through its inhibitory effects on injury-induced activation of NF-κB and STAT3, and on over-expression of MCP-1. Curcumin may therefore serve as a promising candidate for retinal ischemic diseases.
Collapse
|
9
|
Sun MZ, Guo C, Tian Y, Chen D, Greenaway FT, Liu S. Biochemical, functional and structural characterization of Akbu-LAAO: a novel snake venom L-amino acid oxidase from Agkistrodon blomhoffii ussurensis. Biochimie 2010; 92:343-9. [PMID: 20100538 DOI: 10.1016/j.biochi.2010.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/18/2010] [Indexed: 12/09/2022]
Abstract
An L-amino acid oxidase (Akbu-LAAO) was isolated from the venom of Agkistrodon blomhoffii ussurensis snake using DEAE Sephadex A-50 ion-exchange, Sephadex G-75 gel filtration, and high performance liquid chromatographies. The homogeneity and molecular mass of Akbu-LAAO were analyzed by SDS-PAGE and MALDI-TOF spectrometry. The sequences of ten peptides from Akbu-LAAO were established by HPLC-nESI-MS/MS analysis. Protein sequence alignment indicated that i) that Akbu-LAAO is a new snake venom LAAO, and ii) Akbu-LAAO shares homology with several LAAOs from the venoms of Calloselasma rhodost, Agkistrodon halys, Daboia russellii siamensis, and Trimeresurus stejnegeri. Akbu-LAAO is a homodimer with a molecular mass of approximately 124.4 kDa. It reacts optimally with its enzymatic substrate, Leu, at pH 4.7 with a K(m) of 2.1 mM. ICP-AES measurements showed that Akbu-LAAO contains four Zn(2+) per dimer that are unessential for the hydrolytic activity of the enzyme. The emission fluorescence intensity of Akbu-LAAO decreases by 61% on removal of Zn(2+) indicating that the zinc probably helps maintain the structural integrity of the enzyme. The addition of exogenous metal ions, including Mg(2+), Mn(2+), Ca(2+), Ce(3+), Nd(3+), Co(2+) and Tb(3+), increases the l-Leu hydrolytic activity of the enzyme. Akbu-LAAO shows apparent anti-aggregation effects on human and rabbit platelets. It exhibits a strong bacteriostasis effect on Staphylococcus aureus, eighteen fold that of cephalosporin C under the same conditions. Taken together, the biochemical, proteomic, structural and functional characterizations reveal that Akbu-LAAO is a novel LAAO with promise for biotechnological and medical applications.
Collapse
Affiliation(s)
- Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | | | | | | | | | | |
Collapse
|
10
|
Yohannes E, Chang J, Tar MT, Davies KP, Chance MR. Molecular targets for diabetes mellitus-associated erectile dysfunction. Mol Cell Proteomics 2009; 9:565-78. [PMID: 20007950 DOI: 10.1074/mcp.m900286-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein expression profiles in rat corporal smooth muscle tissue were compared between animal models of streptozotocin-induced diabetes mellitus (STZ-DM) and age-matched controls (AMCs) at 1 week and 2 months after induction of hyperglycemia with STZ treatment. At each time point, protein samples from four STZ-DM and four AMC rat corpora tissues were prepared independently and analyzed together across multiple quantitative two-dimensional gels using a pooled internal standard sample to quantify expression changes with statistical confidence. A total of 170 spots were differential expressed among the four experimental groups. A subsequent mass spectrometry analysis of the 170 spots identified a total of 57 unique proteins. Network analysis of these proteins using MetaCore suggested altered activity of transcriptional factors that are of too low abundance to be detected by the two-dimensional gel method. The proteins that were down-regulated with diabetes include isoforms of collagen that are precursors to fibril-forming collagen type 1; Hsp47, which assists and mediates the proper folding of procollagen; and several proteins whose abundance is controlled by sex hormones (e.g. CRP1 and A2U). On the other hand, proteins seen or predicted to be up-regulated include proteins involved in cell apoptosis (e.g. p53, 14-3-3-gamma, Serpinf1, Cct4, Cct5, and Sepina3n), proteins that neutralize the biological activity of nerve growth factor (e.g. anti-NGF 30), and proteins involved in lipid metabolism (e.g. apoA-I and apoA-IV). Subsequent Western blot validation analysis of p53, 14-3-3-gamma, and Hsp47 confirmed increased p53 and 14-3-3-gamma and decreased Hsp47 levels in separate samples. According to the results from the Western blot analysis, Hsp47 protein showed a approximately 3-fold decrease at 1 week and was virtually undetectable at 2 months in diabetic versus control. Taken together, our results identify novel candidate proteins playing a role in erectile dysfunction in diabetes resulting from STZ treatment.
Collapse
Affiliation(s)
- Elizabeth Yohannes
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
11
|
Sun MZ, Liu S, Tang J, Wang Z, Gong X, Sun C, Greenaway F. Proteomics analysis of two mice hepatocarcinoma ascites syngeneic cell lines with high and low lymph node metastasis rates provide potential protein markers for tumor malignancy attributes to lymphatic metastasis. Proteomics 2009; 9:3285-302. [DOI: 10.1002/pmic.200701002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|