1
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lü X, Zhang Q, Chen J, Cui S, Yang B. Mechanisms of thermal, acid, desiccation and osmotic tolerance of Cronobacter spp. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 39749527 DOI: 10.1080/10408398.2024.2447304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cronobacter spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions. Acid tolerance is achieved through internal pH regulation, acid efflux pumps, and acid tolerance proteins, allowing survival in acidic food matrices and the gastrointestinal tract. Desiccation tolerance is mediated by the accumulation of protective osmolytes like trehalose, stabilizing proteins and membranes to withstand dryness, especially in dry food products. Similarly, osmotic stress resilience is supported by compatible solutes such as trehalose and glycine betaine, along with metabolic adaptations to balance osmotic pressures. These mechanisms highlight the adaptability of Cronobacter spp. to diverse environments. Moreover, exposure to sublethal stresses, including heat, osmotic, dry, and pH stresses, may induce homologous or cross-resistance, complicating control strategies. Understanding these survival mechanisms is essential to mitigate the risks of Cronobacter spp., especially in powdered infant formula (PIF), and ensure food safety.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lv X, Zhang Q, Chen J, Cui S, Yang B. Use of proteomics to elucidate characteristics of Cronobacter sakazakii under mild heat stress. Int J Food Microbiol 2024; 425:110885. [PMID: 39178661 DOI: 10.1016/j.ijfoodmicro.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Cronobacter sakazakii is an opportunistic pathogen known for causing severe diseases. Mild heat treatment is commonly used in food processing, however, the pathogenic characteristics and underlying mechanisms of Cronobacter sakazakii strains remain poorly understood. In this study, we found that mild heat stress (MHS) at 52 °C can induce several deleterious effects in Cronobacter sakazakii, including damage to the cell wall, genomic DNA breakage, and misfolding of cytoplasmic proteins. These conditions lead to a decreased survival ability under acid, desiccation, and osmotic stress; a reduction in biofilm formation; and diminished motility. Notably, surviving C. sakazakii cells retain their pathogenicity, causing significant intestinal damage in newborn mice. This damage is characterized by epithelial sloughing and disruption of the intestinal structure. Tandem mass tag (TMT)-based proteomics identified 736 proteins with differential abundance across C. sakazakii strains subjected to mild heat stress, highlighting adaptations in biofilm formation, motility, and stress tolerance. Key regulatory changes were observed in phospholipid metabolism and protein synthesis, which underpin this complex stress response. This data illustrates a sophisticated balance between environmental adaptability and pathogenic potential. The metabolic and pathogenic responses of C. sakazakii to mild heat stress are closely linked to its phospholipid metabolism and the production of secretory proteins, both crucial for its virulence and reliant on membrane transport. This complex interplay emphasizes the need to understand these mechanisms to develop effective control strategies.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Abstract
Bacteria often encounter temperature fluctuations in their natural habitats and must adapt to survive. The molecular response of bacteria to sudden temperature upshift or downshift is termed the heat shock response (HSR) or the cold shock response (CSR), respectively. Unlike the HSR, which activates a dedicated transcription factor that predominantly copes with heat-induced protein folding stress, the CSR is mediated by a diverse set of inputs. This review provides a picture of our current understanding of the CSR across bacteria. The fundamental aspects of CSR involved in sensing and adapting to temperature drop, including regulation of membrane fluidity, protein folding, DNA topology, RNA metabolism, and protein translation, are discussed. Special emphasis is placed on recent findings of a CSR circuitry in Escherichia coli mediated by cold shock family proteins and RNase R that monitors and modulates messenger RNA structure to facilitate global translation recovery during acclimation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA;
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, California 94158, USA; .,Department of Cell and Tissue Biology, University of California, San Francisco, California 94158, USA.,California Institute of Quantitative Biology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
4
|
Liu S, Ma Y, Zheng Y, Zhao W, Zhao X, Luo T, Zhang J, Yang Z. Cold-Stress Response of Probiotic Lactobacillus plantarum K25 by iTRAQ Proteomic Analysis. J Microbiol Biotechnol 2020; 30:187-195. [PMID: 31752066 PMCID: PMC9728241 DOI: 10.4014/jmb.1909.09021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To understand the molecular mechanism involved in the survivability of cold-tolerant lactic acid bacteria was of great significance in food processing, since these bacteria play a key role in a variety of low-temperature fermented foods. In this study, the cold-stress response of probiotic Lactobacillus plantarum K25 isolated from Tibetan kefir grains was analyzed by iTRAQ proteomic method. By comparing differentially expressed (DE) protein profiles of the strain incubated at 10°C and 37°C, 506 DE proteins were identified. The DE proteins involved in carbohydrate, amino acid and fatty acid biosynthesis and metabolism were significantly down-regulated, leading to a specific energy conservation survival mode. The DE proteins related to DNA repair, transcription and translation were up-regulated, implicating change of gene expression and more protein biosynthesis needed in response to cold stress. In addition, two-component system, quorum sensing and ABC (ATP-binding cassette) transporters also participated in cell cold-adaptation process. These findings provide novel insight into the cold-resistance mechanism in L. plantarum with potential application in low temperature fermented or preserved foods.
Collapse
Affiliation(s)
- Shaoli Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Yimiao Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Yi Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Wen Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Xiao Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Tianqi Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University Beijing, P.R. China,Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China,Corresponding author Phone: +86-10-68984870 Fax: +86-10-68984870 E-mail:
| |
Collapse
|
5
|
Santos T, Théron L, Chambon C, Viala D, Centeno D, Esbelin J, Hébraud M. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms. J Proteomics 2018; 187:152-160. [PMID: 30071319 DOI: 10.1016/j.jprot.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
MALDI-TOF Mass spectrometry Imaging (MSI) is a surface-sampling technology that can determine spatial information and relative abundance of analytes directly from biological samples. Human listeriosis cases are due to the ingestion of contaminated foods with the pathogenic bacteria Listeria monocytogenes. The reduction of water availability in food workshops by decreasing the air relative humidity (RH) is one strategy to improve the control of bacterial contamination. This study aims to develop and implement an MSI approach on L. monocytogenes biofilms and proof of concept using a dehumidified stress condition. MSI allowed examining the distribution of low molecular weight proteins within the biofilms subjected to a dehumidification environment, mimicking the one present in a food workshop (10 °C, 75% RH). Furthermore, a LC-MS/MS approach was made to link the dots between MSI and protein identification. Five identified proteins were assigned to registered MSI m/z, including two cold-shock proteins and a ligase involved in cell wall biogenesis. These data demonstrate how imaging can be used to dissect the proteome of an intact bacterial biofilm giving new insights into protein expression relating to a dehumidification stress adaptation. Data are available via ProteomeXchange with identifier PXD010444. BIOLOGICAL SIGNIFICANCE The ready-to-eat food processing industry has the daily challenge of controlling the contamination of surfaces and machines with spoilage and pathogenic microorganisms. In some cases, it is a lost cause due to these microorganisms' capacity to withstand the cleaning treatments, like desiccation procedures. Such a case is the ubiquitous Gram-positive Bacterium Listeria monocytogenes. Its surface proteins have particular importance for the interaction with its environment, being important factors contributing to adaptation to stress conditions. There are few reproducibly techniques to obtain the surface proteins of Gram-positive cells. Here, we developed a workflow that enables the use of MALDI imaging on Gram-positive bacterium biofilms to study the impact of dehumidification on sessile cells. It will be of the most interest to test this workflow with different environmental conditions and potentially apply it to other biofilm-forming bacteria.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Laëtitia Théron
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Delphine Centeno
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France; INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France.
| |
Collapse
|
6
|
Gan X, Tang H, Ye D, Li P, Luo L, Lin W. Diversity and dynamics stability of bacterial community in traditional solid-state fermentation of Qishan vinegar. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1299-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Harst A, Albaum SP, Bojarzyn T, Trötschel C, Poetsch A. Proteomics of FACS-sorted heterogeneous Corynebacterium glutamicum populations. J Proteomics 2017; 160:1-7. [PMID: 28323243 DOI: 10.1016/j.jprot.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/26/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
Abstract
The metabolic status of individual cells in microbial cultures can differ, being relevant for biotechnology, environmental and medical microbiology. However, it is hardly understood in molecular detail due to limitations of current analytical tools. Here, we demonstrate that FACS in combination with proteomics can be used to sort and analyze cell populations based on their metabolic state. A previously established GFP reporter system was used to detect and sort single Corynebacterium glutamicum cells based on the concentration of branched chain amino acids (BCAA) using FACS. A proteomics workflow optimized for small cell numbers was used to quantitatively compare proteomes of a ΔaceE mutant, lacking functional pyruvate dehydrogenase (PD), and the wild type. About 800 proteins could be quantified from 1,000,000 cells. In the ΔaceE mutant BCAA production was coordinated with upregulation of the glyoxylate cycle and TCA cycle to counter the lack of acetyl CoA resulting from the deletion of aceE. BIOLOGICAL SIGNIFICANCE Metabolic pathways in C. glutamicum WT and ΔaceE, devoid of functional pyruvate dehydrogenase, were compared to understand proteome changes that contribute to the high production of branched chain amino acids (BCAA) in the ΔaceE strain. The data complements previous metabolome studies and corroborates the role of malate provided by the glyoxylate cycle and increased activity of glycolysis and pyruvate carboxylase reaction to replenish the TCA cycle. A slight increase in acetohydroxyacid synthase (ILV subunit B) substantiates the previously reported increased pyruvate pool in C. glutamicumΔaceE, and the benefit of additional ilv gene cluster overexpression for BCAA production.
Collapse
Affiliation(s)
- Andreas Harst
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Stefan P Albaum
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Tanja Bojarzyn
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Christian Trötschel
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany; School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth PL4 8AA, United Kingdom.
| |
Collapse
|
8
|
He G, Deng J, Wu C, Huang J. A partial proteome reference map of Tetragenococcus halophilus and comparative proteomic and physiological analysis under salt stress. RSC Adv 2017. [DOI: 10.1039/c6ra22521g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tetragenococcus halophilus, a moderately halophilic Gram-positive lactic acid bacteria, was widely existed in many food fermentation systems, where salt stress is an environmental condition commonly encountered.
Collapse
Affiliation(s)
- Guiqiang He
- College of Light Industry, Textile & Food Engineering
- Sichuan University
- Chengdu 610065
- China
- Key Laboratory of Leather Chemistry and Engineering
| | - Jingcheng Deng
- College of Light Industry, Textile & Food Engineering
- Sichuan University
- Chengdu 610065
- China
- Key Laboratory of Leather Chemistry and Engineering
| | - Chongde Wu
- College of Light Industry, Textile & Food Engineering
- Sichuan University
- Chengdu 610065
- China
- Key Laboratory of Leather Chemistry and Engineering
| | - Jun Huang
- College of Light Industry, Textile & Food Engineering
- Sichuan University
- Chengdu 610065
- China
- Key Laboratory of Leather Chemistry and Engineering
| |
Collapse
|
9
|
Yang J, He Y, Jiang J, Chen W, Gao Q, Pan L, Shi C. Comparative proteomic analysis by iTRAQ-2DLC-MS/MS provides insight into the key proteins involved in Cronobacter sp. biofilm formation. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Ye Y, Jiao R, Gao J, Li H, Ling N, Wu Q, Zhang J, Xu X. Proteins involved in responses to biofilm and planktonic modes in Cronobacter sakazakii. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Fehr A, Eshwar AK, Neuhauss SCF, Ruetten M, Lehner A, Vaughan L. Evaluation of zebrafish as a model to study the pathogenesis of the opportunistic pathogen Cronobacter turicensis. Emerg Microbes Infect 2015; 4:e29. [PMID: 26060602 PMCID: PMC4451267 DOI: 10.1038/emi.2015.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 11/22/2022]
Abstract
Bacteria belonging to the genus Cronobacter spp. have been recognized as causative agents of life-threatening systemic infections, primarily in premature, low-birth weight and/or immune-compromised neonates. Knowledge remains scarce regarding the underlying molecular mechanisms of disease development. In this study, we evaluated the use of a zebrafish model to study the pathogenesis of Cronobacter turicensis LMG 23827T, a clinical isolate responsible for two fatal sepsis cases in neonates. Here, the microinjection of approximately 50 colony forming units (CFUs) into the yolk sac resulted in the rapid multiplication of bacteria and dissemination into the blood stream at 24 h post infection (hpi), followed by the development of a severe bacteremia and larval death within 3 days. In contrast, the innate immune response of the embryos was sufficiently developed to control infection after the intravenous injection of up to 104 CFUs of bacteria. Infection studies using an isogenic mutant devoid of surviving and replicating in human macrophages (ΔfkpA) showed that this strain was highly attenuated in its ability to kill the larvae. In addition, the suitability of the zebrafish model system to study the effectiveness of antibiotics to treat Cronobacter infections in zebrafish embryos was examined. Our data indicate that the zebrafish model represents an excellent vertebrate model to study virulence-related aspects of this opportunistic pathogen in vivo.
Collapse
Affiliation(s)
- Alexander Fehr
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Maja Ruetten
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich , Winterthurerstrasse 268, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Microbiota Dynamics Associated with Environmental Conditions and Potential Roles of Cellulolytic Communities in Traditional Chinese Cereal Starter Solid-State Fermentation. Appl Environ Microbiol 2015; 81:5144-56. [PMID: 26002897 DOI: 10.1128/aem.01325-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/16/2015] [Indexed: 12/25/2022] Open
Abstract
Traditional Chinese solid-state fermented cereal starters contain highly complex microbial communities and enzymes. Very little is known, however, about the microbial dynamics related to environmental conditions, and cellulolytic communities have never been proposed to exist during cereal starter fermentation. In this study, we performed Illumina MiSeq sequencing combined with PCR-denaturing gradient gel electrophoresis to investigate microbiota, coupled with clone library construction to trace cellulolytic communities in both fermentation stages. A succession of microbial assemblages was observed during the fermentation of starters. Lactobacillales and Saccharomycetales dominated the initial stages, with a continuous decline in relative abundance. However, thermotolerant and drought-resistant Bacillales, Eurotiales, and Mucorales were considerably accelerated during the heating stages, and these organisms dominated until the end of fermentation. Enterobacteriales were consistently ubiquitous throughout the process. For the cellulolytic communities, only the genera Sanguibacter, Beutenbergia, Agrobacterium, and Erwinia dominated the initial fermentation stages. In contrast, stages at high incubation temperature induced the appearance and dominance of Bacillus, Aspergillus, and Mucor. The enzymatic dynamics of amylase and glucoamylase also showed a similar trend, with the activities clearly increased in the first 7 days and subsequently decreased until the end of fermentation. Furthermore, β-glucosidase activity continuously and significantly increased during the fermentation process. Evidently, cellulolytic potential can adapt to environmental conditions by changes in the community structure during the fermentation of starters.
Collapse
|
13
|
Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation. ACTA ACUST UNITED AC 2014; 41:1533-40. [DOI: 10.1007/s10295-014-1487-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/05/2014] [Indexed: 01/01/2023]
Abstract
Abstract
The aim of this study was to investigate the acid tolerance response (ATR) in Lactobacillus casei by a combined physiological and proteomic analysis. To optimize the ATR induction, cells were acid adapted for 1 h at different pHs, and then acid challenged at pH 3.5. The result showed that acid adaptation improved acid tolerance, and the highest survival was observed in cells adapted at pH 4.5 for 1 h. Analysis of the physiological data showed that the acid-adapted cells exhibited higher intracellular pH (pHi), intracellular NH4+ content, and lower inner permeability compared with the cells without adaptation. Proteomic analysis was performed upon acid adaptation to different pHs (pH 6.5 vs. pH 4.5) using two-dimensional electrophoresis. A total of 24 proteins that exhibited at least 1.5-fold differential expression were identified. Four proteins (Pgk, LacD, Hpr, and Galm) involved in carbohydrate catabolism and five classic stress response proteins (GroEL, GrpE, Dnak, Hspl, and LCAZH_2811) were up-regulated after acid adaptation at pH 4.5 for 1 h. Validation of the proteomic data was performed by quantitative RT-PCR, and transcriptional regulation of all selected genes showed a positive correlation with the proteomic patterns of the identified proteins. Results presented in this study may be useful for further elucidating the acid tolerance mechanisms and may help in formulating new strategies to improve the industrial performance of this species during acid stress.
Collapse
|
14
|
Yan Q, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, Tall BD, McCusker MP, Fanning S. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol 2013; 4:256. [PMID: 24032028 PMCID: PMC3759002 DOI: 10.3389/fmicb.2013.00256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/13/2013] [Indexed: 11/13/2022] Open
Abstract
Outbreaks of human infection linked to the powdered infant formula (PIF) food chain and associated with the bacterium Cronobacter, are of concern to public health. These bacteria are regarded as opportunistic pathogens linked to life-threatening infections predominantly in neonates, with an under developed immune system. Monitoring the microbiological ecology of PIF production sites is an important step in attempting to limit the risk of contamination in the finished food product. Cronobacter species, like other microorganisms can adapt to the production environment. These organisms are known for their desiccation tolerance, a phenotype that can aid their survival in the production site and PIF itself. In evaluating the genome data currently available for Cronobacter species, no sequence information has been published describing a Cronobacter sakazakii isolate found to persist in a PIF production facility. Here we report on the complete genome sequence of one such isolate, Cronobacter sakazakii SP291 along with its phenotypic characteristics. The genome of C. sakazakii SP291 consists of a 4.3-Mb chromosome (56.9% GC) and three plasmids, denoted as pSP291-1, [118.1-kb (57.2% GC)], pSP291-2, [52.1-kb (49.2% GC)], and pSP291-3, [4.4-kb (54.0% GC)]. When C. sakazakii SP291 was compared to the reference C. sakazakii ATCC BAA-894, which is also of PIF origin, the annotated genome data identified two interesting functional categories, comprising of genes related to the bacterial stress response and resistance to antimicrobial and toxic compounds. Using a phenotypic microarray (PM), we provided a full metabolic profile comparing C. sakazakii SP291 and the previously sequenced C. sakazakii ATCC BAA-894. These data extend our understanding of the genome of this important neonatal pathogen and provides further insights into the genotypes associated with features that can contribute to its persistence in the PIF environment.
Collapse
Affiliation(s)
- Qiongqiong Yan
- UCD Centre for Food Safety, WHO Collaborating Centre for Research, Reference and Training on Cronobacter, School of Public Health, Physiotherapy and Population Science, University College Dublin Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dueholm MS, Albertsen M, Otzen D, Nielsen PH. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One 2012; 7:e51274. [PMID: 23251478 PMCID: PMC3521004 DOI: 10.1371/journal.pone.0051274] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli and a few other members of the Enterobacteriales can produce functional amyloids known as curli. These extracellular fibrils are involved in biofilm formation and studies have shown that they may act as virulence factors during infections. It is not known whether curli fibrils are restricted to the Enterobacteriales or if they are phylogenetically widespread. The growing number of genome-sequenced bacteria spanning many phylogenetic groups allows a reliable bioinformatic investigation of the phylogenetic diversity of the curli system. Here we show that the curli system is phylogenetically much more widespread than initially assumed, spanning at least four phyla. Curli fibrils may consequently be encountered frequently in environmental as well as pathogenic biofilms, which was supported by identification of curli genes in public metagenomes from a diverse range of habitats. Identification and comparison of curli subunit (CsgA/B) homologs show that these proteins allow a high degree of freedom in their primary protein structure, although a modular structure of tightly spaced repeat regions containing conserved glutamine, asparagine and glycine residues has to be preserved. In addition, a high degree of variability within the operon structure of curli subunits between bacterial taxa suggests that the curli fibrils might have evolved to fulfill specific functions. Variations in the genetic organization of curli genes are also seen among different bacterial genera. This suggests that some genera may utilize alternative regulatory pathways for curli expression. Comparison of phylogenetic trees of Csg proteins and the 16S rRNA genes of the corresponding bacteria showed remarkably similar overall topography, suggesting that horizontal gene transfer is a minor player in the spreading of the curli system.
Collapse
Affiliation(s)
- Morten S. Dueholm
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Centre for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Per Halkjær Nielsen
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
16
|
The AHL- and BDSF-dependent quorum sensing systems control specific and overlapping sets of genes in Burkholderia cenocepacia H111. PLoS One 2012. [PMID: 23185499 PMCID: PMC3502180 DOI: 10.1371/journal.pone.0049966] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Quorum sensing in Burkholderia cenocepacia H111 involves two signalling systems that depend on different signal molecules, namely N-acyl homoserine lactones (AHLs) and the diffusible signal factor cis-2-dodecenoic acid (BDSF). Previous studies have shown that AHLs and BDSF control similar phenotypic traits, including biofilm formation, proteolytic activity and pathogenicity. In this study we mapped the BDSF stimulon by RNA-Seq and shotgun proteomics analysis. We demonstrate that a set of the identified BDSF-regulated genes or proteins are also controlled by AHLs, suggesting that the two regulons partially overlap. The detailed analysis of two mutually regulated operons, one encoding three lectins and the other one encoding the large surface protein BapA and its type I secretion machinery, revealed that both AHLs and BDSF are required for full expression, suggesting that the two signalling systems operate in parallel. In accordance with this, we show that both AHLs and BDSF are required for biofilm formation and protease production.
Collapse
|
17
|
Inhülsen S, Aguilar C, Schmid N, Suppiger A, Riedel K, Eberl L. Identification of functions linking quorum sensing with biofilm formation in Burkholderia cenocepacia H111. Microbiologyopen 2012; 1:225-42. [PMID: 22950027 PMCID: PMC3426421 DOI: 10.1002/mbo3.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 01/08/2023] Open
Abstract
Burkholderia cenocepacia has emerged as an important pathogen for patients suffering from cystic fibrosis (CF). Previous work has shown that this organism employs the CepIR quorum-sensing (QS) system to control the expression of virulence factors as well as the formation of biofilms. To date, however, very little is known about the QS-regulated virulence factors and virtually nothing about the factors that link QS and biofilm formation. Here, we have employed a combined transcriptomic and proteomic approach to precisely define the QS regulon in our model strain B. cenocepacia H111, a CF isolate. Among the identified CepR-activated loci, three were analyzed in better detail for their roles in biofilm development: (i) a gene cluster coding for the BclACB lectins, (ii) the large surface protein BapA, and (iii) a type I pilus. The analysis of defined mutants revealed that BapA plays a major role in biofilm formation on abiotic surfaces while inactivation of the type I pilus showed little effect both in a static microtitre dish-based biofilm assay and in flow-through cells. Inactivation of the bclACB lectin genes resulted in biofilms containing hollow microcolonies, suggesting that the lectins are important for biofilm structural development.
Collapse
Affiliation(s)
- Silja Inhülsen
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Claudio Aguilar
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Nadine Schmid
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Angela Suppiger
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Kathrin Riedel
- Institute of Microbiology, Ernst-Moritz-Arndt University of GreifswaldFriedrich-Ludwig-Jahn-Strasse 15, D-17487, Greifswald,, Germany
| | - Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| |
Collapse
|
18
|
Brul S, Bassett J, Cook P, Kathariou S, McClure P, Jasti P, Betts R. ‘Omics’ technologies in quantitative microbial risk assessment. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2012.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Abstract
A newcomer to the -omics era, proteomics, is a broad instrument-intensive research area that has advanced rapidly since its inception less than 20 years ago. Although the 'wet-bench' aspects of proteomics have undergone a renaissance with the improvement in protein and peptide separation techniques, including various improvements in two-dimensional gel electrophoresis and gel-free or off-gel protein focusing, it has been the seminal advances in MS that have led to the ascension of this field. Recent improvements in sensitivity, mass accuracy and fragmentation have led to achievements previously only dreamed of, including whole-proteome identification, and quantification and extensive mapping of specific PTMs (post-translational modifications). With such capabilities at present, one might conclude that proteomics has already reached its zenith; however, 'capability' indicates that the envisioned goals have not yet been achieved. In the present review we focus on what we perceive as the areas requiring more attention to achieve the improvements in workflow and instrumentation that will bridge the gap between capability and achievement for at least most proteomes and PTMs. Additionally, it is essential that we extend our ability to understand protein structures, interactions and localizations. Towards these ends, we briefly focus on selected methods and research areas where we anticipate the next wave of proteomic advances.
Collapse
|
20
|
A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl Microbiol Biotechnol 2011; 93:707-22. [PMID: 22159611 DOI: 10.1007/s00253-011-3757-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/04/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022]
Abstract
Lactobacillus casei has traditionally been recognized as a probiotic and frequently used as an adjunct culture in fermented dairy products, where acid stress is an environmental condition commonly encountered. In the present study, we carried out a comparative physiological and proteomic study to investigate lactic-acid-induced alterations in Lactobacillus casei Zhang (WT) and its acid-resistant mutant. Analysis of the physiological data showed that the mutant exhibited 33.8% higher glucose phosphoenolpyruvate:sugar phosphotransferase system activity and lower glycolytic pH compared with the WT under acidic conditions. In addition, significant differences were detected in both cells during acid stress between intracellular physiological state, including intracellular pH, H(+)-ATPase activity, and intracellular ATP pool. Comparison of the proteomic data based on 2D-DIGE and i-TRAQ indicated that acid stress invoked a global change in both strains. The mutant protected the cells against acid damage by regulating the expression of key proteins involved in cellular metabolism, DNA replication, RNA synthesis, translation, and some chaperones. Proteome results were validated by Lactobacillus casei displaying higher intracellular aspartate and arginine levels, and the survival at pH 3.3 was improved 1.36- and 2.10-fold by the addition of 50-mM aspartate and arginine, respectively. To our knowledge, this is the first demonstration that aspartate may be involved in acid tolerance in Lactobacillus casei. Results presented here may help us understand acid resistance mechanisms and help formulate new strategies to enhance the industrial applications of this species.
Collapse
|
21
|
Hao P, Qian J, Ren Y, Sze SK. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus strong cation exchange (SCX) for fractionation of iTRAQ-labeled peptides. J Proteome Res 2011; 10:5568-74. [PMID: 22014306 DOI: 10.1021/pr2007686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The iTRAQ technique is popular for the comparative analysis of proteins in different complex samples. To increase the dynamic range and sensitivity of peptide identification in shotgun proteomics, SCX chromatography is generally used for the fractionation of iTRAQ-labeled peptides before LC-MS/MS analysis. However, SCX suffers from clustering of similarly charged peptides and the need to desalt fractions. In this report, SCX is compared with the alternative ERLIC method for fractionating iTRAQ-labeled peptides. The simultaneous effect of electrostatic repulsion and hydrophilic interaction in ERLIC results in peptide elution in order of decreasing pI and GRAVY values (increasing polarity). Volatile solvents can be used. We applied ERLIC to iTRAQ-labeled peptides from rat liver tissue, and 2745 proteins and 30,016 unique peptides were identified with high confidence from three technical replicates. This was 12.9 and 49.4% higher, respectively, than was obtained using SCX. In addition, ERLIC is appreciably better at the identification of highly hydrophobic peptides. The results indicate that ERLIC is a more convenient and more effective alternative to SCX for the fractionation of iTRAQ-labeled peptides. Quantification data show that both SCX and ERLIC fractionation have no significant effect on protein quantification by iTRAQ.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | | | | |
Collapse
|
22
|
Arku B, Fanning S, Jordan K. Heat Adaptation and Survival ofCronobacterspp. (FormerlyEnterobacter sakazakii). Foodborne Pathog Dis 2011; 8:975-81. [DOI: 10.1089/fpd.2010.0819] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Benedict Arku
- Teagasc, Moorepark Food Research Centre, Fermoy, Ireland
- UCD Centre for Food Safety and WHO Collaborating Centre for Research, Reference and Training on Cronobacter, UCD Veterinary Sciences Centre, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety and WHO Collaborating Centre for Research, Reference and Training on Cronobacter, UCD Veterinary Sciences Centre, University College Dublin, Dublin, Ireland
| | - Kieran Jordan
- Teagasc, Moorepark Food Research Centre, Fermoy, Ireland
| |
Collapse
|
23
|
Jain S, Graham C, Graham RLJ, McMullan G, Ternan NG. Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630. J Proteome Res 2011; 10:3880-90. [PMID: 21786815 DOI: 10.1021/pr200327t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clostridium difficile is a serious nosocomial pathogen whose prevalence worldwide is increasing. Postgenomic technologies can now be deployed to develop understanding of the evolution and diversity of this important human pathogen, yet little is known about the adaptive ability of C. difficile. We used iTRAQ labeling and 2D-LC-MS/MS driven proteomics to investigate the response of C. difficile 630 to a mild, but clinically relevant, heat stress. A statistically validated list of 447 proteins to which functional roles were assigned was generated, allowing reconstruction of central metabolic pathways including glycolysis, γ-aminobutyrate metabolism, and peptidoglycan biosynthesis. Some 49 proteins were significantly modulated under heat stress: classical heat shock proteins including GroEL, GroES, DnaK, Clp proteases, and HtpG were up-regulated in addition to several stress inducible rubrerythrins and proteins associated with protein modification, such as prolyl isomerases and proline racemase. The flagellar filament protein, FliC, was down-regulated, possibly as an energy conservation measure, as was the SecA1 preprotein translocase. The up-regulation of hydrogenases and various oxidoreductases suggests that electron flux across these pools of enzymes changes under heat stress. This work represents the first comparative proteomic analysis of the heat stress response in C. difficile strain 630, complementing the existing proteomics data sets and the single microarray comparative analysis of stress response. Thus we have a benchmark proteome for this pathogen, leading to a deeper understanding of its physiology and metabolism informed by the unique functional and adaptive processes used during a temperature upshift mimicking host pyrexia.
Collapse
Affiliation(s)
- Shailesh Jain
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co Londonderry, North Ireland, United Kingdom
| | | | | | | | | |
Collapse
|