1
|
Yu H, Yang S, Jiang T, Li T, Duan H, Li M. Repair mechanisms of bone system tissues based on comprehensive perspective of multi-omics. Cell Biol Toxicol 2025; 41:45. [PMID: 39966216 PMCID: PMC11836151 DOI: 10.1007/s10565-025-09995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Bone disorders affect more than half of the adult population worldwide who may have a poor quality of life and physical independence worldwide. Multi-omic techniques are increasingly adopted and applied to determine the molecular mechanisms of bone tissue repair, providing perspective towards personalized medical intervention. Data from genomics, epigenomics, transcriptomics, proteomics, glycomics, and lipidomics were combined to elucidate dynamic processes in bone repair. In this narrative review, the key role of genetic and epigenetic factors in regulating injured cellular responses is highlighted, and changes in RNA and protein expression during the healing phase, as well as glucolipid metabolism adaptation, are described in detail how the repair process is affected. In a word, the integration of multi-omic techniques in this review not only benefits the comprehensive identification of new biomarkers, but also facilitates the development of personalized treatment strategies of bone disorders to revolutionize regenerative medicine.
Collapse
Affiliation(s)
- Honghao Yu
- Departments of Spine Surgery, Shengjing Hospital of China Medical University, Shengyang, China
| | - Shize Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianlong Jiang
- Department of Orthopedic Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin, 300100, China.
| | - Hongmei Duan
- Department of Rheumatology and Immunology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Minglei Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China.
| |
Collapse
|
2
|
Mastroeni P, Geminiani M, Olmastroni T, Frusciante L, Trezza A, Visibelli A, Santucci A. An in vitro cell model for exploring inflammatory and amyloidogenic events in alkaptonuria. J Cell Physiol 2024; 239:e31449. [PMID: 39351877 DOI: 10.1002/jcp.31449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 12/18/2024]
Abstract
Alkaptonuria (AKU) is a progressive systemic inherited metabolic disorder primarily affecting the osteoarticular system, characterized by the degeneration of cartilage induced by ochronosis, ultimately leading to early osteoarthritis (OA). However, investigating AKU pathology in human chondrocytes, which is crucial for understanding the disease, encounters challenges due to limited availability and donor variability. To overcome this obstacle, an in vitro model has been established using homogentisic acid (HGA) to simulate AKU conditions. This model employed immortalized C20/A4 human chondrocytes and serves as a dependable platform for studying AKU pathogenesis. Significantly, the model demonstrates the accumulation of ochronotic pigment in HGA-treated cells, consistent with findings from previous studies. Furthermore, investigations into inflammatory processes during HGA exposure revealed notable oxidative stress, as indicated by elevated levels of reactive oxygen species and lipid peroxidation. Additionally, the model demonstrated HGA-induced inflammatory responses, evidenced by increased production of nitric oxide, overexpression of inducible nitric oxide synthase, and cyclooxygenase-2. These findings underscore the model's utility in studying inflammation associated with AKU. Moreover, analysis of serum amyloid A and serum amyloid P proteins revealed a potential interaction, corroborating evidence of amyloid fibril formation. This hypothesis was further supported by Congo red staining, which showed fibril formation exclusively in HGA-treated cells. Overall, the C20/A4 cell model provided valuable insights into AKU pathogenesis, emphasizing its potential for facilitating drug development and therapeutic interventions.
Collapse
Affiliation(s)
| | - Michela Geminiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Tommaso Olmastroni
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Luisa Frusciante
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Anna Visibelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
- MetabERN, Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| |
Collapse
|
3
|
Wang J, Xue M, Hu Y, Li J, Li Z, Wang Y. Proteomic Insights into Osteoporosis: Unraveling Diagnostic Markers of and Therapeutic Targets for the Metabolic Bone Disease. Biomolecules 2024; 14:554. [PMID: 38785961 PMCID: PMC11118602 DOI: 10.3390/biom14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoporosis (OP), a prevalent skeletal disorder characterized by compromised bone strength and increased susceptibility to fractures, poses a significant public health concern. This review aims to provide a comprehensive analysis of the current state of research in the field, focusing on the application of proteomic techniques to elucidate diagnostic markers and therapeutic targets for OP. The integration of cutting-edge proteomic technologies has enabled the identification and quantification of proteins associated with bone metabolism, leading to a deeper understanding of the molecular mechanisms underlying OP. In this review, we systematically examine recent advancements in proteomic studies related to OP, emphasizing the identification of potential biomarkers for OP diagnosis and the discovery of novel therapeutic targets. Additionally, we discuss the challenges and future directions in the field, highlighting the potential impact of proteomic research in transforming the landscape of OP diagnosis and treatment.
Collapse
Affiliation(s)
- Jihan Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
| | - Mengju Xue
- School of Medicine, Xi’an International University, Xi’an 710077, China
| | - Ya Hu
- Department of Medical College, Hunan Polytechnic of Environment and Biology, Hengyang 421000, China
| | - Jingwen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Zhenzhen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
4
|
|
5
|
Cicaloni V, Spiga O, Dimitri GM, Maiocchi R, Millucci L, Giustarini D, Bernardini G, Bernini A, Marzocchi B, Braconi D, Santucci A. Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease. FASEB J 2019; 33:12696-12703. [PMID: 31462106 DOI: 10.1096/fj.201901529r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alkaptonuria (AKU) is an ultrarare autosomal recessive disorder (MIM 203500) that is caused byby a complex set of mutations in homogentisate 1,2-dioxygenasegene and consequent accumulation of homogentisic acid (HGA), causing a significant protein oxidation. A secondary form of amyloidosis was identified in AKU and related to high circulating serum amyloid A (SAA) levels, which are linked with inflammation and oxidative stress and might contribute to disease progression and patients' poor quality of life. Recently, we reported that inflammatory markers (SAA and chitotriosidase) and oxidative stress markers (protein thiolation index) might be disease activity markers in AKU. Thanks to an international network, we collected genotypic, phenotypic, and clinical data from more than 200 patients with AKU. These data are currently stored in our AKU database, named ApreciseKUre. In this work, we developed an algorithm able to make predictions about the oxidative status trend of each patient with AKU based on 55 predictors, namely circulating HGA, body mass index, total cholesterol, SAA, and chitotriosidase. Our general aim is to integrate the data of apparently heterogeneous patients with AKUAKU by using specific bioinformatics tools, in order to identify pivotal mechanisms involved in AKU for a preventive, predictive, and personalized medicine approach to AKU.-Cicaloni, V., Spiga, O., Dimitri, G. M., Maiocchi, R., Millucci, L., Giustarini, D., Bernardini, G., Bernini, A., Marzocchi, B., Braconi, D., Santucci, A. Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy.,Toscana Life Sciences Foundation, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | | | - Rebecca Maiocchi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy.,Toscana Life Sciences Foundation, Siena, Italy
| | - Lia Millucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Barbara Marzocchi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy.,Unità Operativa Complessa (UOC) Patologia Clinica, Azienda Ospedaliera Senese, Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Minetti M, Bernardini G, Biazzo M, Gutierrez G, Geminiani M, Petrucci T, Santucci A. Padina pavonica Extract Promotes In Vitro Differentiation and Functionality of Human Primary Osteoblasts. Mar Drugs 2019; 17:E473. [PMID: 31443264 PMCID: PMC6724011 DOI: 10.3390/md17080473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023] Open
Abstract
Marine algae have gained much importance in the development of nutraceutical products due to their high content of bioactive compounds. In this work, we investigated the activity of Padina pavonica with the aim to demonstrate the pro-osteogenic ability of its extract on human primary osteoblast (HOb). Our data indicated that the acetonic extract of P. pavonica (EPP) is a safe product as it did not show any effect on osteoblast viability. At the same time, EPP showed to possess a beneficial effect on HOb functionality, triggering their differentiation and mineralization abilities. In particular EPP enhanced the expression of the earlier differentiation stage markers: a 5.4-fold increase in collagen type I alpha 1 chain (COL1A1), and a 2.3-fold increase in alkaline phosphatase (ALPL), as well as those involved in the late differentiation stage: a 3.7-fold increase in osteocalcin (BGLAP) expression and a 2.8-fold in osteoprotegerin (TNFRSF11B). These findings were corroborated by the enhancement in ALPL enzymatic activity (1.7-fold increase) and by the reduction of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) ratio (0.6-fold decrease). Moreover, EPP demonstrated the capacity to enhance the bone nodules formation by 3.2-fold in 4 weeks treated HOb. Therefore, EPP showed a significant capability of promoting osteoblast phenotype. Given its positive effect on bone homeostasis, EPP could be used as a useful nutraceutical product that, in addition to a healthy lifestyle and diet, can be able to contrast and prevent bone diseases, especially those connected with ageing, such as osteoporosis (OP).
Collapse
Affiliation(s)
- Mariagiulia Minetti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
- Institute of Cellular Pharmacology (ICP Ltd.), F24, Triq Valletta, Mosta Technopark, Mosta MST 3000, Malta
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Manuele Biazzo
- Institute of Cellular Pharmacology (ICP Ltd.), F24, Triq Valletta, Mosta Technopark, Mosta MST 3000, Malta
| | - Gilles Gutierrez
- Institute of Cellular Pharmacology (ICP Ltd.), F24, Triq Valletta, Mosta Technopark, Mosta MST 3000, Malta
| | - Michela Geminiani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Teresa Petrucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
7
|
Bernardini G, Minetti M, Polizzotto G, Biazzo M, Santucci A. Pro-Apoptotic Activity of French Polynesian Padina pavonica Extract on Human Osteosarcoma Cells. Mar Drugs 2018; 16:E504. [PMID: 30551628 PMCID: PMC6316765 DOI: 10.3390/md16120504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Recently, seaweeds and their extracts have attracted great interest in the pharmaceutical industry as a source of bioactive compounds. Studies have demonstrated the cytotoxic activity of macroalgae towards different types of cancer cell models, and their consumption has been suggested as a chemo-preventive agent against several cancers such as breast, cervix and colon cancers. Reports relevant to the chemical properties of brown algae Padina sp. are limited and those accompanied to a comprehensive evaluation of the biological activity on osteosarcoma (OS) are non existent. In this report, we explored the chemical composition of French Polynesian Padina pavonica extract (EPP) by spectrophotometric assays (total phenolic, flavonoid and tannin content, and antioxidant activity) and by gas chromatography-mass spectrometry (GC-MS) analysis, and provided EPP lipid and sterols profiles. Several compounds with relevant biological activity were also identified that suggest interesting pharmacological and health-protecting effects for EPP. Moreover, we demonstrated that EPP presents good anti-proliferative and pro-apoptotic activities against two OS cell lines, SaOS-2 and MNNG, with different cancer-related phenotypes. Finally, our data suggest that EPP might target different properties associated with cancer development and aggressiveness.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018⁻2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy.
| | - Mariagiulia Minetti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018⁻2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy.
- Institute of Cellular Pharmacology (ICP Concepts Ltd.), F24, Triq Valletta, Mosta Technopark, MST 3000 Mosta, Malta.
| | - Giuseppe Polizzotto
- Institute of Cellular Pharmacology (ICP Concepts Ltd.), F24, Triq Valletta, Mosta Technopark, MST 3000 Mosta, Malta.
| | - Manuele Biazzo
- Institute of Cellular Pharmacology (ICP Concepts Ltd.), F24, Triq Valletta, Mosta Technopark, MST 3000 Mosta, Malta.
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018⁻2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
8
|
Bernardini G, Geminiani M, Gambassi S, Orlandini M, Petricci E, Marzocchi B, Laschi M, Taddei M, Manetti F, Santucci A. Novel smoothened antagonists as anti-neoplastic agents for the treatment of osteosarcoma. J Cell Physiol 2018; 233:4961-4971. [PMID: 29215700 DOI: 10.1002/jcp.26330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is an ultra-rare highly malignant tumor of the skeletal system affecting mainly children and young adults and it is characterized by an extremely aggressive clinical course. OS patients are currently treated with chemotherapy and complete surgical resection of cancer tissue. However, resistance to chemotherapy and the recurrence of disease, as pulmonary metastasis, remain the two greatest challenges in the management, and treatment of this tumor. For these reasons, it is of primary interest to find alternative therapeutic strategies for OS. Dysregulated Hedgehog signalling is involved in the development of various types of cancers including OS. It has also been implicated in tumor/stromal interaction and cancer stem cell biology, and therefore presents a novel therapeutic strategy for cancer treatment. In our work, we tested the activity of five potent Smoothened (SMO) inhibitors, four acylguanidine and one acylthiourea derivatives, against an OS cell line. We found that almost all our compounds were able to inhibit OS cells proliferation and to reduce Gli1 protein levels. Our results also indicated that SMO inhibition in OS cells by such compounds, induces apoptosis with a nanomolar potency. These findings suggest that inactivation of SMO may be a useful approach to the treatment of patients with OS.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Michela Geminiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Silvia Gambassi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Maurizio Orlandini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Elena Petricci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Barbara Marzocchi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.,UOC Patologia Clinica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Marcella Laschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Maurizio Taddei
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
9
|
Laschi M, Bernardini G, Geminiani M, Manetti F, Mori M, Spreafico A, Campanacci D, Capanna R, Schenone S, Botta M, Santucci A. Differentially activated Src kinase in chemo-naïve human primary osteosarcoma cells and effects of a Src kinase inhibitor. Biofactors 2017; 43:801-811. [PMID: 28786551 DOI: 10.1002/biof.1382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
The therapeutic treatment of osteosarcoma (OS), a rare malignant teenage cancer of the skeletal system, still represents a great challenge as patient survival after conventional protocol chemotherapy treatment has not improved in the last four decades leaving poor patient prognoses. Therefore, many efforts have been done to find increasingly reliable OS cell models and to identify "druggable" targets in OS, in order to identify novel effective therapeutic approaches and treatment strategies. In this contest, the more successful use of patient-derived cell cultures in respect to human commercial lines and findings of Src kinase deregulation in cancer, prompted us to study for the first time the activation state of Src and the potential activity of our Src inhibitor SI-83 in a number of chemo-naïve patient-derived primary OS cells. We here demonstrate that Src is hyperactivated in OS cells in respect to the nonmalignant counterpart and that SI-83 is able to strongly decrease cell viability, proliferation, Src416 phosphorylation, and cell migration. © 2017 BioFactors, 43(6):801-811, 2017.
Collapse
Affiliation(s)
- Marcella Laschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Michela Geminiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Adriano Spreafico
- Immunoematologia Trasfusionale, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, strada delle Scotte14, Siena, 53100, Italy
| | - Domenico Campanacci
- Dipartimento di Chirurgia e Medicina Traslazionale (DCMT), Università degli Studi di Firenze, Ortopedia Largo Palagi, Firenze, 1 50139, Italy
| | - Rodolfo Capanna
- Dipartimento di Ortopedia, Oncologica e Chirurgia Ricostruttiva, Azienda Ospedaliera Universitaria Careggi, largo Brambilla 3, Firenze, 50134, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, Genova, 16132, Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
10
|
Bernardini G, Figura N, Ponzetto A, Marzocchi B, Santucci A. Application of proteomics to the study of Helicobacter pylori and implications for the clinic. Expert Rev Proteomics 2017; 14:477-490. [PMID: 28513226 DOI: 10.1080/14789450.2017.1331739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric epithelium and mucous layer of more than half the world's population. H. pylori is a primary human pathogen, responsible for the development of chronic gastritis, peptic ulceration and gastric cancer. Proteomics is impacting several aspects of medical research: understanding the molecular basis of infection and disease manifestation, identification of therapeutic targets and discovery of clinically relevant biomarkers. Areas covered: The main aim of the present review is to provide a comprehensive overview of the contribution of proteomics to the study of H. pylori infection pathophysiology. In particular, we focused on the role of the bacterium and its most important virulence factor, CagA, in the progression of gastric cells transformation and cancer progression. We also discussed the proteomic approaches aimed at the investigation of the host response to bacterial infection. Expert commentary: In the field of proteomics of H. pylori, comprehensive analysis of clinically relevant proteins (functional proteomics) rather than entire proteomes will result in important medical outcomes. Finally, we provided an outlook on the potential development of proteomics in H. pylori research.
Collapse
Affiliation(s)
- Giulia Bernardini
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Natale Figura
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Antonio Ponzetto
- b Dipartimento di Scienze Mediche , Università degli Studi di Torino , Torino , Italy
| | - Barbara Marzocchi
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Annalisa Santucci
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| |
Collapse
|
11
|
Geminiani M, Gambassi S, Millucci L, Lupetti P, Collodel G, Mazzi L, Frediani B, Braconi D, Marzocchi B, Laschi M, Bernardini G, Santucci A. Cytoskeleton Aberrations in Alkaptonuric Chondrocytes. J Cell Physiol 2017; 232:1728-1738. [DOI: 10.1002/jcp.25500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/22/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Michela Geminiani
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Silvia Gambassi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Lia Millucci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Pietro Lupetti
- Dipartimento di Scienze della Vita; Università degli Studi di Siena; Siena Italy
| | - Giulia Collodel
- Dipartimento di Medicina Molecolare e dello Sviluppo; Università degli Studi di Siena; Siena Italy
| | - Lucia Mazzi
- Dipartimento di Medicina Molecolare e dello Sviluppo; Università degli Studi di Siena; Siena Italy
| | - Bruno Frediani
- Dipartimento di Scienze Mediche; Chirurgiche e Neuroscienze; Università degli Studi di Siena; Siena Italy
| | - Daniela Braconi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Barbara Marzocchi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Marcella Laschi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| |
Collapse
|
12
|
Laschi M, Bernardini G, Geminiani M, Ghezzi L, Amato L, Braconi D, Millucci L, Frediani B, Spreafico A, Franchi A, Campanacci D, Capanna R, Santucci A. Establishment of Four New Human Primary Cell Cultures from Chemo-Naïve Italian Osteosarcoma Patients. J Cell Physiol 2015; 230:2718-27. [PMID: 25809010 DOI: 10.1002/jcp.24996] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/23/2015] [Indexed: 12/25/2022]
Abstract
Osteosarcoma (OS) is a primary highly malignant tumor of bone, affecting predominately adolescents and young adults between 10 and 20 years of age. OS is characterized by an extremely aggressive clinical course, with a rapid development of metastasis to the lung and distant bones.
Collapse
Affiliation(s)
- Marcella Laschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Michela Geminiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Lorenzo Ghezzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Loredana Amato
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Lia Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Bruno Frediani
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Università degli Studi di Siena, Policlinico Le Scotte, Siena, Italy
| | - Adriano Spreafico
- Immunoematologia Trasfusionale, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Alessandro Franchi
- Dipartimento di Chirurgia e Medicina Traslazionale, Università degli Studi di Firenze, Firenze, Italy
| | - Domenico Campanacci
- Dipartimento di Ortopedia, Oncologica e Chirurgia Ricostruttiva, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Rodolfo Capanna
- Dipartimento di Ortopedia, Oncologica e Chirurgia Ricostruttiva, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
13
|
Millucci L, Ghezzi L, Bernardini G, Braconi D, Lupetti P, Perfetto F, Orlandini M, Santucci A. Diagnosis of secondary amyloidosis in alkaptonuria. Diagn Pathol 2014; 9:185. [PMID: 25567001 PMCID: PMC4189149 DOI: 10.1186/s13000-014-0185-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/07/2014] [Indexed: 11/29/2022] Open
Abstract
Background Alkaptonuria (AKU) is an inborn error of catabolism due to a
deficient activity of homogentisate 1,2-dioxygenase. Patients suffer from a severe
arthropathy, cardiovascular and kidney disease but other organs are affected, too.
We found secondary amyloidosis as a life-threatening complication in AKU, thus
opening new perspectives for its treatment. We proved that methotrexate and
anti-oxidants have an excellent efficacy to inhibit the production of amyloid in
AKU model chondrocytes. Owing to the progressive and intractable condition, it
seems important to detect amyloid deposits at an early phase in AKU and the choice
of specimens for a correct diagnosis is crucial. Methods Ten AKU subjects were examined for amyloidosis; abdominal fat pad
aspirates, labial salivary gland, cartilage and synovia specimens were analysed by
CR, Th-T, IF, TEM. Results Amyloid was detected in only one abdominal fat pad specimen.
However, all subjects demonstrated amyloid deposition in salivary glands and in
other organ biopsies, indicating salivary gland as the ideal specimen for early
amyloid detection in AKU. Conclusions This is, at the best of our knowledge, the first report providing
correct indications on the diagnosis of amyloidosis in AKU, thus offering the
possibility of treatment of such co-morbidity to AKU patients. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_185
Collapse
|
14
|
Braconi D, Millucci L, Ghezzi L, Santucci A. Redox proteomics gives insights into the role of oxidative stress in alkaptonuria. Expert Rev Proteomics 2014; 10:521-35. [PMID: 24206226 DOI: 10.1586/14789450.2013.858020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alkaptonuria (AKU) is an ultra-rare metabolic disorder of the catabolic pathway of tyrosine and phenylalanine that has been poorly characterized at molecular level. As a genetic disease, AKU is present at birth, but its most severe manifestations are delayed due to the deposition of a dark-brown pigment (ochronosis) in connective tissues. The reasons for such a delayed manifestation have not been clarified yet, though several lines of evidence suggest that the metabolite accumulated in AKU sufferers (homogentisic acid) is prone to auto-oxidation and induction of oxidative stress. The clarification of the pathophysiological molecular mechanisms of AKU would allow a better understanding of the disease, help find a cure for AKU and provide a model for more common rheumatic diseases. With this aim, we have shown how proteomics and redox proteomics might successfully overcome the difficulties of studying a rare disease such as AKU and the limitations of the hitherto adopted approaches.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, via Fiorentina 1, Università degli Studi di Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
15
|
Amyloidosis, inflammation, and oxidative stress in the heart of an alkaptonuric patient. Mediators Inflamm 2014; 2014:258471. [PMID: 24876668 PMCID: PMC4020161 DOI: 10.1155/2014/258471] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/25/2014] [Indexed: 01/17/2023] Open
Abstract
Background. Alkaptonuria, a rare autosomal recessive metabolic disorder caused by deficiency in homogentisate 1,2-dioxygenase activity, leads to accumulation of oxidised homogentisic acid in cartilage and collagenous structures present in all organs and tissues, especially joints and heart, causing a pigmentation called ochronosis. A secondary amyloidosis is associated with AKU. Here we report a study of an aortic valve from an AKU patient. Results. Congo Red birefringence, Th-T fluorescence, and biochemical assays demonstrated the presence of SAA-amyloid deposits in AKU stenotic aortic valve. Light and electron microscopy assessed the colocalization of ochronotic pigment and SAA-amyloid, the presence of calcified areas in the valve. Immunofluorescence detected lipid peroxidation of the tissue and lymphocyte/macrophage infiltration causing inflammation. High SAA plasma levels and proinflammatory cytokines levels comparable to those from rheumatoid arthritis patients were found in AKU patient. Conclusions. SAA-amyloidosis was present in the aortic valve from an AKU patient and colocalized with ochronotic pigment as well as with tissue calcification, lipid oxidation, macrophages infiltration, cell death, and tissue degeneration. A local HGD expression in human cardiac tissue has also been ascertained suggesting a consequent local production of ochronotic pigment in AKU heart.
Collapse
|
16
|
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of bone and the third most common cancer in childhood and adolescence. Nowadays, early diagnosis, drug resistance and recurrence of the disease represent the major challenges in OS treatment. Post-genomics, and in particular proteomic technologies, offer an invaluable opportunity to address the level of biological complexity expressed by OS. Although the main goal of OS oncoproteomics is focused on diagnostic and prognostic biomarker discovery, in this review we describe and discuss global protein profiling approaches to other aspects of OS biology and pathophysiology, or to investigate the mechanism of action of chemotherapeutics. In addition, we present proteomic analyses carried out on OS cell lines as in vitro models for studying osteoblastic cell biology and the attractive opportunity offered by proteomics of OS cancer stem cells.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, via Fiorentina 1, Università degli Studi di Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
17
|
Bernardini G, Laschi M, Serchi T, Spreafico A, Botta M, Schenone S, Arena S, Geminiani M, Scaloni A, Collodel G, Orlandini M, Niccolai N, Santucci A. Proteomics and phosphoproteomics provide insights into the mechanism of action of a novel pyrazolo[3,4-d]pyrimidine Src inhibitor in human osteosarcoma. MOLECULAR BIOSYSTEMS 2014; 10:1305-12. [PMID: 24615350 DOI: 10.1039/c3mb70328b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is a highly malignant bone tumour, affecting mainly children and young adults between 10 and 20 years of age. It represents the most frequent primitive malignant tumour of the skeletal system and is characterized by an extremely aggressive clinical course, with rapid development of lung metastases. In the last few years, targeting Src in the treatment of OS has become one of the major challenges in the development of new drugs, since an elevated Src kinase activity has been associated with the development and the maintenance of the OS malignant phenotype. Recently, SI-83, a novel pyrazolo[3,4-d]pyrimidine derivate Src inhibitor, was selected as a promising OS therapeutic drug because of its elevated anti-tumour effects toward human OS. In the present study, gel-based proteomics and phosphoproteomics revealed significant changes in proteins involved in many cancer related processes. We got insight into SI-83 proapoptotic and antiproliferative properties (overrepresentation of GRIA1, GRP78, and CALR and underrepresentation of NPM1, RCN, and P4HB). Nevertheless, the most significant findings of our work are the SI-83 induced dephosphorylation of ARPC5L, a subunit of the actin related Arp2/3 complex, and the decrease of other cytoskeleton proteins. These data, together with a dramatic impairment of SaOS-2 cell migration and adhesion, suggest that SI-83 may have antimetastatic features that enhance its use as a potent OS chemotherapeutic drug.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Fiorentina 1, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Spreafico A, Millucci L, Ghezzi L, Geminiani M, Braconi D, Amato L, Chellini F, Frediani B, Moretti E, Collodel G, Bernardini G, Santucci A. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria. Rheumatology (Oxford) 2013; 52:1667-73. [PMID: 23704321 PMCID: PMC3741479 DOI: 10.1093/rheumatology/ket185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective. Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. Methods. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Results. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. Conclusion. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis.
Collapse
Affiliation(s)
- Adriano Spreafico
- Dipartimento di Biotecnologie, Università degli Studi di Siena, Chimica e Farmacia, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Millucci L, Spreafico A, Tinti L, Braconi D, Ghezzi L, Paccagnini E, Bernardini G, Amato L, Laschi M, Selvi E, Galeazzi M, Mannoni A, Benucci M, Lupetti P, Chellini F, Orlandini M, Santucci A. Alkaptonuria is a novel human secondary amyloidogenic disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1682-91. [PMID: 22850426 PMCID: PMC3787765 DOI: 10.1016/j.bbadis.2012.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/03/2012] [Accepted: 07/23/2012] [Indexed: 02/02/2023]
Abstract
Alkaptonuria (AKU) is an ultra-rare disease developed from the lack of homogentisic acid oxidase activity, causing homogentisic acid (HGA) accumulation that produces a HGA-melanin ochronotic pigment, of unknown composition. There is no therapy for AKU. Our aim was to verify if AKU implied a secondary amyloidosis. Congo Red, Thioflavin-T staining and TEM were performed to assess amyloid presence in AKU specimens (cartilage, synovia, periumbelical fat, salivary gland) and in HGA-treated human chondrocytes and cartilage. SAA and SAP deposition was examined using immunofluorescence and their levels were evaluated in the patients' plasma by ELISA. 2D electrophoresis was undertaken in AKU cells to evaluate the levels of proteins involved in amyloidogenesis. AKU osteoarticular tissues contained SAA-amyloid in 7/7 patients. Ochronotic pigment and amyloid co-localized in AKU osteoarticular tissues. SAA and SAP composition of the deposits assessed secondary type of amyloidosis. High levels of SAA and SAP were found in AKU patients' plasma. Systemic amyloidosis was assessed by Congo Red staining of patients' abdominal fat and salivary gland. AKU is the second pathology after Parkinson's disease where amyloid is associated with a form of melanin. Aberrant expression of proteins involved in amyloidogenesis has been found in AKU cells. Our findings on alkaptonuria as a novel type II AA amyloidosis open new important perspectives for its therapy, since methotrexate treatment proved to significantly reduce in vitro HGA-induced A-amyloid aggregates.
Collapse
Affiliation(s)
- Lia Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|