1
|
Pohlschroder M, Schulze S, Pfeiffer F, Hong Y. Haloferax volcanii: a versatile model for studying archaeal biology. J Bacteriol 2025:e0006225. [PMID: 40366157 DOI: 10.1128/jb.00062-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Archaea, once thought limited to extreme environments, are now recognized as ubiquitous and fundamental players in global ecosystems. While morphologically similar to bacteria, they are a distinct domain of life and are evolutionarily closer to eukaryotes. The development of model archaeal systems has facilitated studies that have underscored unique physiological, biochemical, and genetic characteristics of archaea. Haloferax volcanii stands out as a model archaeon due to its ease of culturing, ability to grow on defined media, amenability to genetic and biochemical methods, as well as the support from a highly collaborative community. This haloarchaeon has been instrumental in exploring diverse aspects of archaeal biology, ranging from polyploidy, replication origins, and post-translational modifications to cell surface biogenesis, metabolism, and adaptation to high-salt environments. The extensive use of Hfx. volcanii further catalyzed the development of new technologies and databases, facilitating discovery-driven research that offers significant implications for biotechnology, biomedicine, and core biological questions.
Collapse
Affiliation(s)
| | - Stefan Schulze
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, New York, USA
| | - Friedhelm Pfeiffer
- Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Yirui Hong
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Couto-Rodríguez RL, Koh J, Chen S, Maupin-Furlow JA. Insights into the Lysine Acetylome of the Haloarchaeon Haloferax volcanii during Oxidative Stress by Quantitative SILAC-Based Proteomics. Antioxidants (Basel) 2023; 12:1203. [PMID: 37371933 PMCID: PMC10294847 DOI: 10.3390/antiox12061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress adaptation strategies are important to cell function and are linked to cardiac, neurodegenerative disease, and cancer. Representatives of the Archaea domain are used as model organisms based on their extreme tolerance to oxidants and close evolutionary relationship with eukaryotes. A study of the halophilic archaeon Haloferax volcanii reveals lysine acetylation to be associated with oxidative stress responses. The strong oxidant hypochlorite: (i) stimulates an increase in lysine acetyltransferase HvPat2 to HvPat1 abundance ratios and (ii) selects for lysine deacetylase sir2 mutants. Here we report the dynamic occupancy of the lysine acetylome of glycerol-grown H. volcanii as it shifts in profile in response to hypochlorite. These findings are revealed by the: (1) quantitative multiplex proteomics of the SILAC-compatible parent and Δsir2 mutant strains and (2) label-free proteomics of H26 'wild type' cells. The results show that lysine acetylation is associated with key biological processes including DNA topology, central metabolism, cobalamin biosynthesis, and translation. Lysine acetylation targets are found conserved across species. Moreover, lysine residues modified by acetylation and ubiquitin-like sampylation are identified suggesting post-translational modification (PTM) crosstalk. Overall, the results of this study expand the current knowledge of lysine acetylation in Archaea, with the long-term goal to provide a balanced evolutionary perspective of PTM systems in living organisms.
Collapse
Affiliation(s)
- Ricardo L. Couto-Rodríguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Hadjeras L, Bartel J, Maier LK, Maaß S, Vogel V, Svensson SL, Eggenhofer F, Gelhausen R, Müller T, Alkhnbashi OS, Backofen R, Becher D, Sharma CM, Marchfelder A. Revealing the small proteome of Haloferax volcanii by combining ribosome profiling and small-protein optimized mass spectrometry. MICROLIFE 2023; 4:uqad001. [PMID: 37223747 PMCID: PMC10117724 DOI: 10.1093/femsml/uqad001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 05/25/2023]
Abstract
In contrast to extensively studied prokaryotic 'small' transcriptomes (encompassing all small noncoding RNAs), small proteomes (here defined as including proteins ≤70 aa) are only now entering the limelight. The absence of a complete small protein catalogue in most prokaryotes precludes our understanding of how these molecules affect physiology. So far, archaeal genomes have not yet been analyzed broadly with a dedicated focus on small proteins. Here, we present a combinatorial approach, integrating experimental data from small protein-optimized mass spectrometry (MS) and ribosome profiling (Ribo-seq), to generate a high confidence inventory of small proteins in the model archaeon Haloferax volcanii. We demonstrate by MS and Ribo-seq that 67% of the 317 annotated small open reading frames (sORFs) are translated under standard growth conditions. Furthermore, annotation-independent analysis of Ribo-seq data showed ribosomal engagement for 47 novel sORFs in intergenic regions. A total of seven of these were also detected by proteomics, in addition to an eighth novel small protein solely identified by MS. We also provide independent experimental evidence in vivo for the translation of 12 sORFs (annotated and novel) using epitope tagging and western blotting, underlining the validity of our identification scheme. Several novel sORFs are conserved in Haloferax species and might have important functions. Based on our findings, we conclude that the small proteome of H. volcanii is larger than previously appreciated, and that combining MS with Ribo-seq is a powerful approach for the discovery of novel small protein coding genes in archaea.
Collapse
Affiliation(s)
- Lydia Hadjeras
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | | | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Verena Vogel
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sarah L Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Teresa Müller
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Anita Marchfelder
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
4
|
Abstract
Transcriptional regulators that integrate cellular and environmental signals to control cell division are well known in bacteria and eukaryotes, but their existence is poorly understood in archaea. We identified a conserved gene (cdrS) that encodes a small protein and is highly transcribed in the model archaeon Haloferax volcanii. The cdrS gene could not be deleted, but CRISPR interference (CRISPRi)-mediated repression of the cdrS gene caused slow growth and cell division defects and changed the expression of multiple genes and their products associated with cell division, protein degradation, and metabolism. Consistent with this complex regulatory network, overexpression of cdrS inhibited cell division, whereas overexpression of the operon encoding both CdrS and a tubulin-like cell division protein (FtsZ2) stimulated division. Chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) identified 18 DNA-binding sites of the CdrS protein, including one upstream of the promoter for a cell division gene, ftsZ1, and another upstream of the essential gene dacZ, encoding diadenylate cyclase involved in c-di-AMP signaling, which is implicated in the regulation of cell division. These findings suggest that CdrS is a transcription factor that plays a central role in a regulatory network coordinating metabolism and cell division. IMPORTANCE Cell division is a central mechanism of life and is essential for growth and development. Members of the Bacteria and Eukarya have different mechanisms for cell division, which have been studied in detail. In contrast, cell division in members of the Archaea is still understudied, and its regulation is poorly understood. Interestingly, different cell division machineries appear in members of the Archaea, with the Euryarchaeota using a cell division apparatus based on the tubulin-like cytoskeletal protein FtsZ, as in bacteria. Here, we identify the small protein CdrS as essential for survival and a central regulator of cell division in the euryarchaeon Haloferax volcanii. CdrS also appears to coordinate other cellular pathways, including synthesis of signaling molecules and protein degradation. Our results show that CdrS plays a sophisticated role in cell division, including regulation of numerous associated genes. These findings are expected to initiate investigations into conditional regulation of division in archaea.
Collapse
|
5
|
Eichler J. Modifying Post‐Translational Modifications: A Strategy Used by Archaea for Adapting to Changing Environments? Bioessays 2020; 42:e1900207. [DOI: 10.1002/bies.201900207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jerry Eichler
- Department of Life SciencesBen Gurion University of the Negev Beersheva 84105 Israel
| |
Collapse
|
6
|
Xu X, Wang T, Niu Y, Liang K, Yang Y. The ubiquitin-like modification by ThiS and ThiF in Escherichia coli. Int J Biol Macromol 2019; 141:351-357. [PMID: 31442507 DOI: 10.1016/j.ijbiomac.2019.08.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/22/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Escherichia coli, one of the most well-studied gram-negative bacterial species, encodes two ubiquitin-like proteins (UBLs), ThiS and MoaD. The studies on prokaryotic UBLs such as Pup, and small archaeal modifier protein have revealed the function of UBLs. However, in gram-negative bacteria, the functions of UBLs in protein modification are still poorly understood to date. Here, we report that ThiS, which has a β-grasp fold and carboxy-terminal diglycine motif similar to ubiquitin, is able to form protein conjugates in vivo and in vitro. We also constructed in vitro ThiS conjugation (thisylation) system and identified the modified lysine sites by MS/MS, this provides an essential platform for studying the UBLs thisylation system in E. coli. The modification system is dependent on lysine 83 (ATPase activity site) and cysteine 169 (zinc binding site) in ThiF and three important substrates, GroEL, PriC, FtsA, were found to be covalently modified by this system in vitro. Taken together, this study provided evidence that the protein conjugation function of β-grasp fold UBLs is conserved in the three major evolutionary lineages of life.
Collapse
Affiliation(s)
- Xibing Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; Medical College, Henan University of Science and Technology, Luoyang 471000, China
| | - Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ke Liang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
Rhodanese-Like Domain Protein UbaC and Its Role in Ubiquitin-Like Protein Modification and Sulfur Mobilization in Archaea. J Bacteriol 2019; 201:JB.00254-19. [PMID: 31085691 DOI: 10.1128/jb.00254-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-like protein (Ubl) modification targets proteins for transient inactivation and/or proteasome-mediated degradation in archaea. Here the rhodanese-like domain (RHD) protein UbaC (HVO_1947) was found to copurify with the E1-like enzyme (UbaA) of the Ubl modification machinery in the archaeon Haloferax volcanii UbaC was shown to be important for Ubl ligation, particularly for the attachment of the Ubl SAMP2/3s to protein targets after exposure to oxidants (NaOCl, dimethyl sulfoxide [DMSO], and methionine sulfoxide [MetO]) and the proteasome inhibitor bortezomib. While UbaC was needed for ligation of the Ubl SAMP1 to MoaE (the large subunit of molybdopterin synthase), it was not important in the formation of oxidant-induced SAMP1 protein conjugates. Indicative of defects in sulfur relay, mutation of ubaC impaired molybdenum cofactor (Moco)-dependent DMSO reductase activity and cell survival at elevated temperature, suggesting a correlation with defects in the 2-thiolated state of wobble uridine tRNA. Overall, the archaeal stand-alone RHD UbaC has an important function in Ubl ligation and is associated with sulfur relay processes.IMPORTANCE Canonical E2 Ub/Ubl-conjugating enzymes are not conserved in the dual-function Ubl systems associated with protein modification and sulfur relay. Instead, the C-terminal RHDs of E1-RHD fusion proteins are the apparent E2 modules of these systems in eukaryotes. E1s that lack an RHD are common in archaea. Here we identified an RHD (UbaC) that serves as an apparent E2 analog with the E1-like UbaA in the dual-function Ubl sampylation system of archaea. Unlike the eukaryotic E1-RHD fusion, the archaeal RHD is a stand-alone protein. This new insight suggests that E1 function in Ubl pathways could be influenced by shifts in RHD abundance and/or competition with other protein partners in the cell.
Collapse
|
8
|
Nagel C, Machulla A, Zahn S, Soppa J. Several One-Domain Zinc Finger µ-Proteins of Haloferax Volcanii Are Important for Stress Adaptation, Biofilm Formation, and Swarming. Genes (Basel) 2019; 10:genes10050361. [PMID: 31083437 PMCID: PMC6562870 DOI: 10.3390/genes10050361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022] Open
Abstract
Zinc finger domains are highly structured and can mediate interactions to DNA, RNA, proteins, lipids, and small molecules. Accordingly, zinc finger proteins are very versatile and involved in many biological functions. Eukaryotes contain a wealth of zinc finger proteins, but zinc finger proteins have also been found in archaea and bacteria. Large zinc finger proteins have been well studied, however, in stark contrast, single domain zinc finger µ-proteins of less than 70 amino acids have not been studied at all, with one single exception. Therefore, 16 zinc finger µ-proteins of the haloarchaeon Haloferax volcanii were chosen and in frame deletion mutants of the cognate genes were generated. The phenotypes of mutants and wild-type were compared under eight different conditions, which were chosen to represent various pathways and involve many genes. None of the mutants differed from the wild-type under optimal or near-optimal conditions. However, 12 of the 16 mutants exhibited a phenotypic difference under at least one of the four following conditions: Growth in synthetic medium with glycerol, growth in the presence of bile acids, biofilm formation, and swarming. In total, 16 loss of function and 11 gain of function phenotypes were observed. Five mutants indicated counter-regulation of a sessile versus a motile life style in H. volcanii. In conclusion, the generation and analysis of a set of deletion mutants demonstrated the high importance of zinc finger µ-proteins for various biological functions, and it will be the basis for future mechanistic insight.
Collapse
Affiliation(s)
- Chantal Nagel
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Anja Machulla
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Sebastian Zahn
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Jörg Soppa
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
9
|
Methionine Sulfoxide Reductases of Archaea. Antioxidants (Basel) 2018; 7:antiox7100124. [PMID: 30241308 PMCID: PMC6211008 DOI: 10.3390/antiox7100124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023] Open
Abstract
Methionine sulfoxide reductases are found in all domains of life and are important in reversing the oxidative damage of the free and protein forms of methionine, a sulfur containing amino acid particularly sensitive to reactive oxygen species (ROS). Archaea are microbes of a domain of life distinct from bacteria and eukaryotes. Archaea are well known for their ability to withstand harsh environmental conditions that range from habitats of high ROS, such as hypersaline lakes of intense ultraviolet (UV) radiation and desiccation, to hydrothermal vents of low concentrations of dissolved oxygen at high temperature. Recent evidence reveals the methionine sulfoxide reductases of archaea function not only in the reduction of methionine sulfoxide but also in the ubiquitin-like modification of protein targets during oxidative stress, an association that appears evolutionarily conserved in eukaryotes. Here is reviewed methionine sulfoxide reductases and their distribution and function in archaea.
Collapse
|
10
|
Fuchs ACD, Maldoner L, Wojtynek M, Hartmann MD, Martin J. Rpn11-mediated ubiquitin processing in an ancestral archaeal ubiquitination system. Nat Commun 2018; 9:2696. [PMID: 30002364 PMCID: PMC6043591 DOI: 10.1038/s41467-018-05198-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/22/2018] [Indexed: 12/05/2022] Open
Abstract
While protein ubiquitination was long believed to be a truly eukaryotic feature, recently sequenced genomes revealed complete ubiquitin (Ub) modification operons in archaea. Here, we present the structural and mechanistic characterization of an archaeal Rpn11 deubiquitinase from Caldiarchaeum subterraneum, CsRpn11, and its role in the processing of CsUb precursor and ubiquitinated proteins. CsRpn11 activity is affected by the catalytic metal ion type, small molecule inhibitors, sequence characteristics at the cleavage site, and the folding state of CsUb-conjugated proteins. Comparison of CsRpn11 and CsRpn11-CsUb crystal structures reveals a crucial conformational switch in the CsRpn11 Ins-1 site, which positions CsUb for catalysis. The presence of this transition in a primordial soluble Rpn11 thus predates the evolution of eukaryotic Rpn11 immobilized in the proteasomal lid. Complementing phylogenetic studies, which designate CsRpn11 and CsUb as close homologs of the respective eukaryotic proteins, our results provide experimental support for an archaeal origin of protein ubiquitination.
Collapse
Affiliation(s)
- Adrian C D Fuchs
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Lorena Maldoner
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Matthias Wojtynek
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| |
Collapse
|
11
|
McMillan LJ, Hwang S, Farah RE, Koh J, Chen S, Maupin-Furlow JA. Multiplex quantitative SILAC for analysis of archaeal proteomes: a case study of oxidative stress responses. Environ Microbiol 2017; 20:385-401. [PMID: 29194950 DOI: 10.1111/1462-2920.14014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
Stable isotope labelling of amino acids in cell culture (SILAC) is a quantitative proteomic method that can illuminate new pathways used by cells to adapt to different lifestyles and niches. Archaea, while thriving in extreme environments and accounting for ∼20%-40% of the Earth's biomass, have not been analyzed with the full potential of SILAC. Here, we report SILAC for quantitative comparison of archaeal proteomes, using Haloferax volcanii as a model. A double auxotroph was generated that allowed for complete incorporation of 13 C/15 N-lysine and 13 C-arginine such that each peptide derived from trypsin digestion was labelled. This strain was found amenable to multiplex SILAC by case study of responses to oxidative stress by hypochlorite. A total of 2565 proteins was identified by LC-MS/MS analysis (q-value ≤ 0.01) that accounted for 64% of the theoretical proteome. Of these, 176 proteins were altered at least 1.5-fold (p-value < 0.05) in abundance during hypochlorite stress. Many of the differential proteins were of unknown function. Those of known function included transcription factor homologs related to oxidative stress by 3D-homology modelling and orthologous group comparisons. Thus, SILAC is found to be an ideal method for quantitative proteomics of archaea that holds promise to unravel gene function.
Collapse
Affiliation(s)
- Lana J McMillan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Sungmin Hwang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rawan E Farah
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA.,Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in Archaea. mBio 2017; 8:mBio.01169-17. [PMID: 28874471 PMCID: PMC5587910 DOI: 10.1128/mbio.01169-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant. Proteins that are damaged by oxidative stress are often targeted for proteolysis by the ubiquitin-proteasome system (UPS). The mechanisms that control this response are poorly understood, especially under conditions of mild oxidative stress when protein damage is modest. Here, we discovered a novel function of archaeal MsrA in guiding the Ubl modification of target proteins in the presence of mild oxidant. This newly reported activity of MsrA is distinct from its stereospecific reduction of methionine-S-sulfoxide to methionine residues. Our results are significant steps forward, first, in elucidating a protein factor that guides Ubl modification in archaea, and second, in providing an insight into oxidative stress responses that can trigger Ubl modification in a cell.
Collapse
|
13
|
Plant E3 ligases ubiquitinate Escherichia coli σ 32in vitro. Biochem Biophys Res Commun 2017; 490:1232-1236. [PMID: 28676399 DOI: 10.1016/j.bbrc.2017.06.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/23/2022]
Abstract
Ubiquitin-like proteins (UBLs) are extremely well-conserved among eukaryotes and prokaryotes allowing interactions between proteins from different organisms. For example, the prokaryotic ubiquitin-like proteins (Pups) and the Proteasome accessory factor A (PafA) of Mycobacterium tuberculosis are sufficient to pupylate at least 51 Escherichia coli proteins. This work shows that the plant E3 ligases BnTR1 and AT1G02860 can ubiquitinate E. coli σ32, but not Hsp70 DnaK in vitro. Molecular biology and biochemical studies confirm that the RING finger domain of BnTR1 and AT1G02860 is essential for their function. These results suggest that the substrates of plant E3 ligases can be prokaryotic protein and therefore the plant ubiquitylation system may have evolved from prokaryote.
Collapse
|
14
|
Hepowit NL, de Vera IMS, Cao S, Fu X, Wu Y, Uthandi S, Chavarria NE, Englert M, Su D, Sӧll D, Kojetin DJ, Maupin-Furlow JA. Mechanistic insight into protein modification and sulfur mobilization activities of noncanonical E1 and associated ubiquitin-like proteins of Archaea. FEBS J 2017; 283:3567-3586. [PMID: 27459543 DOI: 10.1111/febs.13819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/17/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023]
Abstract
Here we provide the first detailed biochemical study of a noncanonical E1-like enzyme with broad specificity for cognate ubiquitin-like (Ubl) proteins that mediates Ubl protein modification and sulfur mobilization to form molybdopterin and thiolated tRNA. Isothermal titration calorimetry and in vivo analyses proved useful in discovering that environmental conditions, ATP binding, and Ubl type controlled the mechanism of association of the Ubl protein with its cognate E1-like enzyme (SAMP and UbaA of the archaeon Haloferax volcanii, respectively). Further analysis revealed that ATP hydrolysis triggered the formation of thioester and peptide bonds within the Ubl:E1-like complex. Importantly, the thioester was an apparent precursor to Ubl protein modification but not sulfur mobilization. Comparative modeling to MoeB/ThiF guided the discovery of key residues within the adenylation domain of UbaA that were needed to bind ATP as well as residues that were specifically needed to catalyze the downstream reactions of sulfur mobilization and/or Ubl protein modification. UbaA was also found to be Ubl-automodified at lysine residues required for early (ATP binding) and late (sulfur mobilization) stages of enzyme activity revealing multiple layers of autoregulation. Cysteine residues, distinct from the canonical E1 'active site' cysteine, were found important in UbaA function supporting a model that this noncanonical E1 is structurally flexible in its active site to allow Ubl~adenylate, Ubl~E1-like thioester and cysteine persulfide(s) intermediates to form.
Collapse
Affiliation(s)
- Nathaniel L Hepowit
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Ian Mitchelle S de Vera
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Shiyun Cao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Xian Fu
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Yifei Wu
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Sivakumar Uthandi
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Nikita E Chavarria
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dan Su
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dieter Sӧll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Chemistry, Yale University, New Haven, CT, USA
| | - Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA. .,Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Bochtler M, Piasecka A. Haloferax volcanii UbaA, catalytic engine for sampylation and sulfur transfer. FEBS J 2016; 283:3563-3566. [PMID: 27542853 DOI: 10.1111/febs.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Small Archaeal Modifier Proteins (SAMPs) from Haloferax volcanii belong to the group of ubiquitin like proteins (Ubls) that act both as protein modifiers and sulfur carriers. The E1-like enzyme UbaA is essential for SAMP activation and therefore required for both sampylation and sulfur transfer. Here, we provide a commentary on the thorough characterization of UbaA by J. Maupin-Furlow and colleagues.
Collapse
Affiliation(s)
- Matthias Bochtler
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland.,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Anna Piasecka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|