1
|
Alrubia S, Mao J, Chen Y, Barber J, Rostami-Hodjegan A. Altered Bioavailability and Pharmacokinetics in Crohn's Disease: Capturing Systems Parameters for PBPK to Assist with Predicting the Fate of Orally Administered Drugs. Clin Pharmacokinet 2022; 61:1365-1392. [PMID: 36056298 PMCID: PMC9553790 DOI: 10.1007/s40262-022-01169-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Backgrond and Objective Crohn’s disease (CD) is a chronic inflammatory bowel disease that affects a wide age range. Hence, CD patients receive a variety of drugs over their life beyond those used for CD itself. The changes to the integrity of the intestine and its drug metabolising enzymes and transporters (DMETs) can alter the oral bioavailability of drugs. However, there are other changes in systems parameters determining the fate of drugs in CD, and understanding these is essential for dose adjustment in patients with CD. Methods The current analysis gathered all the available clinical data on the kinetics of drugs in CD (by March 2021), focusing on orally administered small molecule drugs. A meta-analysis of the systems parameters affecting oral drug pharmacokinetics was conducted. The systems information gathered on intestine, liver and blood proteins and other physiological parameters was incorporated into a physiologically based pharmacokinetic (PBPK) platform to create a virtual population of CD patients, with a view for guiding dose adjustment in the absence of clinical data in CD. Results There were no uniform trends in the reported changes in reported oral bioavailability. The nature of the drug as well as the formulation affected the direction and magnitude of variation in kinetics in CD patients relative to healthy volunteers. Even for the same drug, the reported changes in exposure varied, possibly due to a lack of distinction between the activity states of CD. The highest alteration was seen with S-verapamil and midazolam, 8.7- and 5.3-fold greater exposure, respectively, in active CD patients relative to healthy volunteers. Only one report was available on liver DMETs in CD, and indicated reduced CYP3A4 activity. In a number of reports, mRNA expression of DMETs in the ileum and colon of CD patients was measured, focussing on P-glycoprotein (p-gp) transporter and CYP3A4 enzyme, and showed contradictory results. No data were available on protein expression in duodenum and jejunum despite their dominant role in oral drug absorption. Conclusion There are currently inadequate dedicated clinical or quantitative proteomic studies in CD to enable predictive PBPK models with high confidence and adequate verification. The PBPK models for CD with the available systems parameters were able to capture the major physiological influencers and the gaps to be filled by future research. Quantification of DMETs in the intestine and the liver in CD is warranted, alongside well-defined clinical drug disposition studies with a number of index drugs as biomarkers of changes in DMETs in these patients, to avoid large-scale dedicated studies for every drug to determine the effects of disease on the drug’s metabolism and disposition and the consequential safety and therapeutic concerns. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-022-01169-4.
Collapse
Affiliation(s)
- Sarah Alrubia
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK.,Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jialin Mao
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuan Chen
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK. .,Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, UK.
| |
Collapse
|
4
|
Dubaisi S, Caruso JA, Gaedigk R, Vyhlidal CA, Smith PC, Hines RN, Kocarek TA, Runge-Morris M. Developmental Expression of the Cytosolic Sulfotransferases in Human Liver. Drug Metab Dispos 2019; 47:592-600. [PMID: 30885913 PMCID: PMC6505379 DOI: 10.1124/dmd.119.086363] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
The liver is the predominant organ of metabolism for many endogenous and foreign chemicals. Cytosolic sulfotransferases (SULTs) catalyze the sulfonation of drugs and other xenobiotics, as well as hormones, neurotransmitters, and sterols, with consequences that include enhanced drug elimination, hormone inactivation, and procarcinogen bioactivation. SULTs are classified into six gene families, but only SULT1 and SULT2 enzymes are expressed in human liver. We characterized the developmental expression patterns of SULT1 and SULT2 mRNAs and proteins in human liver samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), RNA sequencing, and targeted quantitative proteomics. Using a set of prenatal, infant, and adult liver specimens, RT-qPCR analysis demonstrated that SULT1A1 (transcript variant 1) expression did not vary appreciably during development; SULT1C2, 1C4, and 1E1 mRNA levels were highest in prenatal and/or infant liver, and 1A2, 1B1, and 2A1 mRNA levels were highest in infant and/or adult. Hepatic SULT1A1 (transcript variant 5), 1C3, and 2B1 mRNA levels were low regardless of developmental stage. Results obtained with RNA sequencing of a different set of liver specimens (prenatal and pediatric) were generally comparable results to those of the RT-qPCR analysis, with the additional finding that SULT1A3 expression was highest during gestation. Analysis of SULT protein content in a library of human liver cytosols demonstrated that protein levels generally corresponded to the mRNAs, with the major exception that SULT1C4 protein levels were much lower than expected based on mRNA levels. These findings further support the concept that hepatic SULTs play important metabolic roles throughout the human life course, including early development.
Collapse
Affiliation(s)
- Sarah Dubaisi
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Joseph A Caruso
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Roger Gaedigk
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Carrie A Vyhlidal
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Philip C Smith
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Ronald N Hines
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Thomas A Kocarek
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| | - Melissa Runge-Morris
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (J.A.C., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri (R.G., C.A.V.); Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (P.C.S.); and Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (R.N.H.)
| |
Collapse
|
5
|
Hansen J, Palmfeldt J, Pedersen KW, Funder AD, Frost L, Hasselstrøm JB, Jornil JR. Postmortem protein stability investigations of the human hepatic drug-metabolizing cytochrome P450 enzymes CYP1A2 and CYP3A4 using mass spectrometry. J Proteomics 2019; 194:125-131. [PMID: 30529742 DOI: 10.1016/j.jprot.2018.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 10/21/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Variability in expression and activity of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes can play a causal role in fatal intoxication cases and is thus of forensic interest. We investigated the feasibility of LC-MS/MS based quantification and in vitro enzyme activity measurements of two major drug-metabolizing enzymes CYP1A2 and CYP3A4 in postmortem human liver microsomes (HLM). In autopsy cases (postmortem interval 24-36 h) we found CYP1A2 and CYP3A4 protein levels similar to that measured in a non-decayed reference HLM pool, whereas CYP1A2 and CYP3A4 enzyme activities were absent or severely decreased. Stability studies showed that CYP1A2 and CYP3A4 protein abundances were relatively stable in tissue stored in vitro for up to seven days at 4 °C. When tissue was stored for more than one day at 21 °C variable and case-specific decay patterns were observed, and CYP abundances declined especially after 3-4 days storage. Investigations of 50 autopsy cases revealed mean CYP1A2 and CYP3A4 levels of 49 and 47 pmol per mg HLM protein and inter-individual variabilities similar to those reported in other studies. This study supports postmortem quantification of CYP proteins in autopsy hepatic tissue by mass spectrometry. SIGNIFICANCE: This study indicates that MS-based detection of drug-metabolizing cytochrome P450 (CYP) proteins is achievable in postmortem hepatic tissue and that acceptable quantification data are obtainable but dependent on the storage conditions and postmortem sampling time. CYP abundance data could contribute to a conceivable way of assessing individual CYP activity phenotypes in a postmortem context.
Collapse
Affiliation(s)
- Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Denmark.
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Denmark
| | | | | | - Lise Frost
- Department of Forensic Medicine, Aarhus University, Denmark
| | | | | |
Collapse
|
6
|
Zhang Y, Zhan C, Chen G, Sun J. Label‑free quantitative proteomics and bioinformatics analyses of alcoholic liver disease in a chronic and binge mouse model. Mol Med Rep 2018; 18:2079-2087. [PMID: 29956796 PMCID: PMC6072164 DOI: 10.3892/mmr.2018.9225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/14/2018] [Indexed: 12/13/2022] Open
Abstract
As a significant cause of mortality and morbidity, alcoholic liver disease (ALD) has been widely investigated. However, little is known about the underlying metabolic mechanisms involved in the complicated pathological processes of ALD. The present study used label‑free quantitative proteomics and bioinformatics analyses to investigate the differentially expressed proteins (DEPs) and their functions in the livers of alcohol‑feed (AF) and control pair‑feed (PF) mice. As a result, 87 upregulated DEPs and 133 downregulated DEPs were identified in AF liver tissues compared with PF livers. Gene ontology and Kyoto encyclopedia of genes and genomes bioinformatics analyses demonstrated that the DEPs were significantly enriched in 'protein binding', 'metabolism', 'signal conduction' and 'immune response'. The expression of several core proteins including thyroid hormone receptor interactor 12 (TRIP12), NADH dehydrogenase (ubiquinone)1 α subcomplex, assembly factor 3 (NDUFAF3) and guanine monophosphate synthetase (GMPS) was validated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in a larger series of samples. The RT‑qPCR results confirmed that TRIP12, NDUFAF3 and GMPS genes were significantly differentially expressed in between the AF and PF samples. These results extend our understanding of the molecular mechanisms underlying the occurrence and development of ALD. The present study indicated that the majority of DEPs serve vital roles in multiple metabolic pathways and this extends our knowledge of the molecular mechanisms involved in the occurrence and progression of ALD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Genwen Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jianyong Sun
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|