1
|
Zhang T, Liu X, Rossio V, Dawson SL, Gygi SP, Paulo JA. Enhancing Proteome Coverage by Using Strong Anion-Exchange in Tandem with Basic-pH Reversed-Phase Chromatography for Sample Multiplexing-Based Proteomics. J Proteome Res 2024; 23:2870-2881. [PMID: 37962907 PMCID: PMC11090996 DOI: 10.1021/acs.jproteome.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sample multiplexing-based proteomic strategies rely on fractionation to improve proteome coverage. Tandem mass tag (TMT) experiments, for example, can currently accommodate up to 18 samples with proteins spanning several orders of magnitude, thus necessitating fractionation to achieve reasonable proteome coverage. Here, we present a simple yet effective peptide fractionation strategy that partitions a pooled TMT sample with a two-step elution using a strong anion-exchange (SAX) spin column prior to gradient-based basic pH reversed-phase (BPRP) fractionation. We highlight our strategy with a TMTpro18-plex experiment using nine diverse human cell lines in biological duplicate. We collected three data sets, one using only BPRP fractionation and two others of each SAX-partition followed by BPRP. The three data sets quantified a similar number of proteins and peptides, and the data highlight noticeable differences in the distribution of peptide charge and isoelectric point between the SAX partitions. The combined SAX partition data set contributed 10% more proteins and 20% more unique peptides that were not quantified by BPRP fractionation alone. In addition to this improved fractionation strategy, we provide an online resource of relative abundance profiles for over 11,000 proteins across the nine human cell lines, as well as two additional experiments using ovarian and pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shane L Dawson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Liu X, Rossio V, Paulo JA. Spin column-based peptide fractionation alternatives for streamlined tandem mass tag (SL-TMT) sample processing. J Proteomics 2023; 276:104839. [PMID: 36758854 PMCID: PMC9990130 DOI: 10.1016/j.jprot.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Fractionation is essential to achieving deep proteome coverage for sample multiplexing experiments where currently up to 18 samples can be analyzed concurrently. However, peptide fractionation (i.e., upstream of LC-MS/MS analysis) with a liquid chromatography system constrains sample processing as only a single sample can be fractionated at once. Here, we highlight the use of spin column-based methods which permit multiple multiplexed samples to be fractionated simultaneously. These methods require only a centrifuge and eliminate the need for a dedicated liquid chromatography system. We investigate peptide fractionation with strong anion exchange (SAX) and high-pH reversed phase (HPRP) spin columns, as well as a combination of both. In two separate experiments, we acquired deep proteome coverage (>8000 quantified proteins), while starting with <25 μg of protein per channel. Our datasets showcase the proteome alterations in two human cell lines resulting from treatment with inhibitors acting on the ubiquitin-proteasome system. We recommend this spin column-based peptide fractionation strategy for high-throughput screening applications or whenever a liquid chromatograph is not readily available. SIGNIFICANCE: Fractionation is a means to achieve deep proteome coverage for global proteomics analysis. Typical liquid chromatography systems may be a prohibitive expense for many laboratories. Here, we investigate prefractionation with strong anion exchange (SAX) and high-pH reversed phase (HPRP) spin columns, as well as a combination of both, as peptide fractionation methods. These spin columns have advantages over liquid chromatography systems, which include relative affordability, higher throughput capability, no carry over, and fewer potential instrument-related malfunctions. In two separate experiments, we acquired deep proteome coverage (>8000 quantified proteins), thereby showing the utility of each or a combination of both spin columns for global proteome analysis.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
3
|
Webb JP, Paiva AC, Rossoni L, Alstrom-Moore A, Springthorpe V, Vaud S, Yeh V, Minde DP, Langer S, Walker H, Hounslow A, Nielsen DR, Larson T, Lilley K, Stephens G, Thomas GH, Bonev BB, Kelly DJ, Conradie A, Green J. Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals. Metab Eng 2022; 72:133-149. [DOI: 10.1016/j.ymben.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
|
4
|
Sanford J, Wang Y, Hansen JR, Gritsenko MA, Weitz KK, Sagendorf TJ, Tognon CE, Petyuk VA, Qian WJ, Liu T, Druker BJ, Rodland KD, Piehowski PD. Evaluation of Differential Peptide Loading on Tandem Mass Tag-Based Proteomic and Phosphoproteomic Data Quality. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:17-30. [PMID: 34813325 PMCID: PMC8739833 DOI: 10.1021/jasms.1c00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Global and phosphoproteome profiling has demonstrated great utility for the analysis of clinical specimens. One barrier to the broad clinical application of proteomic profiling is the large amount of biological material required, particularly for phosphoproteomics─currently on the order of 25 mg wet tissue weight. For hematopoietic cancers such as acute myeloid leukemia (AML), the sample requirement is ≥10 million peripheral blood mononuclear cells (PBMCs). Across large study cohorts, this requirement will exceed what is obtainable for many individual patients/time points. For this reason, we were interested in the impact of differential peptide loading across multiplex channels on proteomic data quality. To achieve this, we tested a range of channel loading amounts (approximately the material obtainable from 5E5, 1E6, 2.5E6, 5E6, and 1E7 AML patient cells) to assess proteome coverage, quantification precision, and peptide/phosphopeptide detection in experiments utilizing isobaric tandem mass tag (TMT) labeling. As expected, fewer missing values were observed in TMT channels with higher peptide loading amounts compared to lower loadings. Moreover, channels with a lower loading have greater quantitative variability than channels with higher loadings. A statistical analysis showed that decreased loading amounts result in an increase in the type I error rate. We then examined the impact of differential loading on the detection of known differences between distinct AML cell lines. Similar patterns of increased data missingness and higher quantitative variability were observed as loading was decreased resulting in fewer statistical differences; however, we found good agreement in features identified as differential, demonstrating the value of this approach.
Collapse
Affiliation(s)
- James
A. Sanford
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Yang Wang
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Joshua R. Hansen
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Marina A. Gritsenko
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Karl K. Weitz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Tyler J. Sagendorf
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Cristina E. Tognon
- Knight
Cancer Institute, Oregon Health & Science
University, Portland, Oregon 97239, United States
- Division
of Hematology and Medical Oncology, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Vladislav A. Petyuk
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Wei-Jun Qian
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Tao Liu
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Brian J. Druker
- Knight
Cancer Institute, Oregon Health & Science
University, Portland, Oregon 97239, United States
- Division
of Hematology and Medical Oncology, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Karin D. Rodland
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
- Knight
Cancer Institute, Oregon Health & Science
University, Portland, Oregon 97239, United States
| | - Paul D. Piehowski
- Environmental
Molecular Sciences Division, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
5
|
Lee AM, Mansuri MS, Wilson RS, Lam TT, Nairn AC, Picciotto MR. Sex Differences in the Ventral Tegmental Area and Nucleus Accumbens Proteome at Baseline and Following Nicotine Exposure. Front Mol Neurosci 2021; 14:657064. [PMID: 34335180 PMCID: PMC8317211 DOI: 10.3389/fnmol.2021.657064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Sex differences in behaviors relevant to nicotine addiction have been observed in rodent models and human subjects. Behavioral, imaging, and epidemiological studies also suggest underlying sex differences in mesolimbic dopamine signaling pathways. In this study we evaluated the proteome in the ventral tegmental area (VTA) and nucleus accumbens (NAc) shell in male and female mice. Experimental groups included two mouse strains (C3H/HeJ and C57BL/6J) at baseline, a sub-chronic, rewarding regimen of nicotine in C3H/HeJ mice, and chronic nicotine administration and withdrawal in C57BL/6J mice. Isobaric labeling with a TMT 10-plex system, sample fractionation, and tandem mass spectrometry were used to quantify changes in protein abundance. In C3H/HeJ mice, similar numbers of proteins were differentially regulated between sexes at baseline compared with within each sex after sub-chronic nicotine administration. In C57BL/6J mice, there were significantly greater numbers of proteins differentially regulated between sexes at baseline compared with within each sex after chronic nicotine administration and withdrawal. Despite differences by sex, strain, and nicotine exposure parameters, glial fibrillary acidic protein (GFAP) and dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32, Ppp1r1b) were repeatedly identified as significantly altered proteins, especially in the VTA. Further, network analyses showed sex- and nicotine-dependent regulation of a number of signaling pathways, including dopaminergic signaling. Sub-chronic nicotine exposure in female mice increased proteins related to dopaminergic signaling in the NAc shell but decreased them in the VTA, whereas the opposite pattern was observed in male mice. In contrast, dopaminergic signaling pathways were similarly upregulated in both male and female VTA after chronic nicotine and withdrawal. Overall, this study identifies significant sex differences in the proteome of the mesolimbic system, at baseline and after nicotine reward or withdrawal, which may help explain differential trajectories and susceptibility to nicotine addiction in males and females.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States
| | - Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale/NIDA Neuroproteomics Center, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| |
Collapse
|
6
|
Temporal proteomic changes induced by nicotine in human cells: A quantitative proteomics approach. J Proteomics 2021; 241:104244. [PMID: 33895337 DOI: 10.1016/j.jprot.2021.104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Nicotine is a prominent active compound in tobacco and many smoking cessation products. Some of the biological effects of nicotine are well documented in in vitro and in vivo systems; however, data are scarce concerning the time-dependent changes on protein and phosphorylation events in response to nicotine. Here, we profiled the proteomes of SH-SY5Y and A549 cell lines subjected to acute (15 min, 1 h and 4 h) or chronic (24 h, 48 h) nicotine exposures. We used sample multiplexing (TMTpro16) and quantified more than 9000 proteins and over 7000 phosphorylation events per cell line. Among our findings, we determined a decrease in mitochondrial protein abundance for SH-SY5Y, while we detected alterations in several immune pathways, such as the complement system, for A549 following nicotine treatment. We also explored the proposed association between smoking (specifically nicotine) and SARS-CoV2. Here, we found several host proteins known to interact with viral proteins that were affected by nicotine in a time dependent manner. This dataset can be mined further to investigate the potential role of nicotine in different biological contexts. SIGNIFICANCE: Smoking is a major public health issue that is associated with several serious chronic, yet preventable diseases, including stroke, heart disease, type 2 diabetes, cancer, and susceptibility to infection. Tobacco smoke is a complex mixture of thousands of different compounds, among which nicotine is the main addictive compound. The biological effects of nicotine have been reported in several models, however very little data are available concerning the temporal proteomic and phosphoproteomic changes in response to nicotine. Here, we provide a dataset exploring the potential role of nicotine on different biological processes over time, including implications in the study of SARS-CoV2.
Collapse
|
7
|
Zhang T, Keele GR, Churchill GA, Gygi SP, Paulo JA. Strain-Specific Peptide (SSP) Interference Reference Sample: A Genetically Encoded Quality Control for Isobaric Tagging Strategies. Anal Chem 2021; 93:5241-5247. [PMID: 33735571 DOI: 10.1021/acs.analchem.0c05483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Isobaric tag-based sample multiplexing strategies are extensively used for global protein abundance profiling. However, such analyses are often confounded by ratio compression resulting from the co-isolation, co-fragmentation, and co-quantification of co-eluting peptides, termed "interference." Recent analytical strategies incorporating ion mobility and real-time database searching have helped to alleviate interference, yet further assessment is needed. Here, we present the strain-specific peptide (SSP) interference reference sample, a tandem mass tag (TMT)pro-labeled quality control that leverages the genetic variation in the proteomes of eight phylogenetically divergent mouse strains. Typically, a peptide with a missense mutation has a different mass and retention time than the reference or native peptide. TMT reporter ion signal for the native peptide in strains that encode the mutant peptide suggests interference which can be quantified and assessed using the interference-free index (IFI). We introduce the SSP by investigating interference in three common data acquisition methods and by showcasing improvements in the IFI when using ion mobility-based gas-phase fractionation. In addition, we provide a user-friendly, online viewer to visualize the data and streamline the calculation of the IFI. The SSP will aid in developing and optimizing isobaric tag-based experiments.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Greg R Keele
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Muraoka S, Jedrychowski MP, Iwahara N, Abdullah M, Onos KD, Keezer KJ, Hu J, Ikezu S, Howell GR, Gygi SP, Ikezu T. Enrichment of Neurodegenerative Microglia Signature in Brain-Derived Extracellular Vesicles Isolated from Alzheimer's Disease Mouse Models. J Proteome Res 2021; 20:1733-1743. [PMID: 33534581 PMCID: PMC7944570 DOI: 10.1021/acs.jproteome.0c00934] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Extracellular vesicles
(EVs) are secreted by any neural cells in
the central nervous system for molecular clearance, cellular communications,
and disease spread in multiple neurodegenerative diseases, including
Alzheimer’s disease (AD), although their exact molecular mechanism
is poorly understood. We hypothesize that high-resolution proteomic
profiling of EVs separated from animal models of AD would determine
the composition of EV contents and their cellular origin. Here, we
examined recently developed transgenic mice (CAST.APP/PS1), which express familial AD-linked mutations of amyloid precursor
protein (APP) and presenilin-1 (PS1) in the CAST/EiJ mouse strain and develop hippocampal neurodegeneration.
Quantitative proteomics analysis of EVs separated from CAST.APP/PS1 and age-matched control mice by tandem mass tag-mass
spectrometry identified a total of 3444 unique proteins, which are
enriched in neuron-, astrocyte-, oligodendrocyte-, and microglia-specific
molecules. CAST.APP/PS1-derived EVs show significant
enrichment of Psen1, APP, and Itgax and reduction of Wdr61, Pmpca,
Aldh1a2, Calu, Anp32b, Actn4, and Ndufv2 compared to WT-derived EVs,
suggesting the involvement of Aβ-processing complex and disease-associated/neurodegenerative
microglia (DAM/MGnD) in EV secretion. In addition, Itgax and Apoe,
DAM/MGnD markers, in EVs show a positive correlation with Itgax and Apoe mRNA expression from brain
tissue in CAST.APP/PS1 mice. These datasets indicate
the significant contribution of Aβ plaque and neurodegeneration-induced
DAM/MGnD microglia for EV secretion in CAST.APP/PS1 mice and shed light on understanding AD pathogenesis.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02118, United States
| | - Naotoshi Iwahara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Mohammad Abdullah
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Kristen D Onos
- The Jackson Laboratory, Bar Harbor, Maine 04609-1523, United States
| | - Kelly J Keezer
- The Jackson Laboratory, Bar Harbor, Maine 04609-1523, United States
| | - Jianqiao Hu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Seiko Ikezu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine 04609-1523, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02118, United States
| | - Tsuneya Ikezu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, United States.,Department of Neurology, Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts 02118, United States.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02118, United States.,Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| |
Collapse
|
9
|
Griss J, Schwämmle V. Analysis of Label-Based Quantitative Proteomics Data Using IsoProt. Methods Mol Biol 2021; 2361:61-73. [PMID: 34236655 DOI: 10.1007/978-1-0716-1641-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Isobaric labeling has become an essential method for quantitative mass spectrometry based experiments. This technique allows high-throughput proteomics while providing reasonable coverage of protein measurements across multiple samples. Here, the analysis of isobarically labeled mass spectrometry data with a special focus on quality control and potential pitfalls is discussed. The protocol is based on our fully integrated IsoProt workflow. The concepts discussed are nevertheless applicable to the analysis of any isobarically labeled experiment using alternative computational tools and algorithms.
Collapse
Affiliation(s)
- Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Pino LK, Rose J, O'Broin A, Shah S, Schilling B. Emerging mass spectrometry-based proteomics methodologies for novel biomedical applications. Biochem Soc Trans 2020; 48:1953-1966. [PMID: 33079175 PMCID: PMC7609030 DOI: 10.1042/bst20191091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
Research into the basic biology of human health and disease, as well as translational human research and clinical applications, all benefit from the growing accessibility and versatility of mass spectrometry (MS)-based proteomics. Although once limited in throughput and sensitivity, proteomic studies have quickly grown in scope and scale over the last decade due to significant advances in instrumentation, computational approaches, and bio-sample preparation. Here, we review these latest developments in MS and highlight how these techniques are used to study the mechanisms, diagnosis, and treatment of human diseases. We first describe recent groundbreaking technological advancements for MS-based proteomics, including novel data acquisition techniques and protein quantification approaches. Next, we describe innovations that enable the unprecedented depth of coverage in protein signaling and spatiotemporal protein distributions, including studies of post-translational modifications, protein turnover, and single-cell proteomics. Finally, we explore new workflows to investigate protein complexes and structures, and we present new approaches for protein-protein interaction studies and intact protein or top-down MS. While these approaches are only recently incipient, we anticipate that their use in biomedical MS proteomics research will offer actionable discoveries for the improvement of human health.
Collapse
Affiliation(s)
- Lindsay K. Pino
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| | - Amy O'Broin
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| | | |
Collapse
|
11
|
Mulcahy MJ, Huard SM, Paulo JA, Wang JH, McKinney S, Henderson BJ, Lester HA. Brain Region-Specific nAChR and Associated Protein Abundance Alterations Following Chronic Nicotine and/or Menthol Exposure. J Proteome Res 2019; 19:36-48. [PMID: 31657575 DOI: 10.1021/acs.jproteome.9b00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of biomarkers that are altered following nicotine/tobacco exposure can facilitate the investigation of tobacco-related diseases. Nicotinic acetylcholine receptors (nAChRs) are pentameric cation channels expressed in the mammalian central and peripheral nervous systems and the neuromuscular junction. Neuronal nAChR subunits (11) have been identified in mammals (α2-7, α9-10, β2-4). We examined changes in β2 nAChR subunit protein levels after chronic nicotine, (±)-menthol, or nicotine co-administered with (±)-menthol in nine murine brain regions. Our investigation of β2 nAChR subunit level changes identified the hypothalamus as a novel region of interest for menthol exposure that demonstrated increased β2 nAChR levels after (±)-menthol plus nicotine exposure compared to nicotine exposure alone. Using mass spectrometry, we further characterized changes in membrane protein abundance profiles in the hypothalamus to identify potential biomarkers of (±)-menthol plus nicotine exposure and proteins that may contribute to the elevated β2 nAChR subunit levels. In the hypothalamus, 272 membrane proteins were identified with altered abundances after chronic nicotine plus menthol exposure with respect to chronic nicotine exposure without menthol. A comprehensive investigation of changes in nAChR and non-nAChR protein expression resulting from (±)-menthol plus nicotine in the brain may establish biomarkers to better understand the effects of these drugs on addiction and addiction-related diseases.
Collapse
Affiliation(s)
- Matthew J Mulcahy
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Stephanie M Huard
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Jonathan H Wang
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Sheri McKinney
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Brandon J Henderson
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States.,Department of Biomedical Sciences , Joan C. Edwards School of Medicine, Marshall University , Huntington , West Virginia 25701 , United States
| | - Henry A Lester
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| |
Collapse
|
12
|
Muraoka S, Jedrychowski MP, Tatebe H, DeLeo AM, Ikezu S, Tokuda T, Gygi SP, Stern RA, Ikezu T. Proteomic Profiling of Extracellular Vesicles Isolated From Cerebrospinal Fluid of Former National Football League Players at Risk for Chronic Traumatic Encephalopathy. Front Neurosci 2019; 13:1059. [PMID: 31649498 PMCID: PMC6794346 DOI: 10.3389/fnins.2019.01059] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of repetitive mild traumatic brain injury, such as American football players. Initial neuropathologic changes in CTE include perivascular deposition of phosphorylated microtubule-associated protein tau (p-tau) neurofibrillary tangles and other aggregates in neurons, astrocytes and cell processes in an irregular pattern often at the depths of the cortical sulci. In later stages, the p-tau depositions become widespread and is associated with neurodegeneration. Extracellular vesicles (EVs) are known to carry neuropathogenic molecules, most notably p-tau. We therefore examined the protein composition of EVs isolated from the cerebrospinal fluid (CSF) of former National Football League (NFL) players with cognitive and neuropsychiatric dysfunction, and an age-matched control group (CTRL) with no history of contact sports or traumatic brain injury. EVs were isolated from the CSF samples using an affinity purification kit. Total tau (t-tau) and tau phosphorylated on threonine181 (p-tau181) in CSF-derived EVs from former NFL players and CTRL participants were measured by ultrasensitive immunoassay. The t-tau and p-tau181 levels of CSF-derived EV were positively correlated with the t-tau and p-tau181 levels of total CSF in former NFL players, respectively, but not in the CTRL group. 429 unique proteins were identified from CSF-derived EVs and quantified by TMT-10 plex method. The identified protein molecules were significantly enriched for the extracellular exosome molecules, Alzheimer's disease pathway and Age/Telomere Length ontology as determined by DAVID Gene Ontology analysis. Ingenuity pathway analysis of the differentially expressed EV proteins revealed enrichment of canonical liver/retinoid X receptor activation pathway. Upstream effect analysis predicted MAPT (tau) as an upstream regulator in former NFL players. These data will be useful for understanding the EV-mediated disease spread and development of novel EV biomarkers for CTE and related disorders.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | | | - Harutsugu Tatebe
- Department of Medical Innovation and Translational Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Annina M. DeLeo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Takahiko Tokuda
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Robert A. Stern
- Department of Neurology, Alzheimer’s Disease Center, CTE Center, Boston University School of Medicine, Boston, MA, United States
- Department of Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Alzheimer’s Disease Center, CTE Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Muntel J, Kirkpatrick J, Bruderer R, Huang T, Vitek O, Ori A, Reiter L. Comparison of Protein Quantification in a Complex Background by DIA and TMT Workflows with Fixed Instrument Time. J Proteome Res 2019; 18:1340-1351. [DOI: 10.1021/acs.jproteome.8b00898] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Muntel
- Biognosys AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | - Ting Huang
- Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Olga Vitek
- Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Lukas Reiter
- Biognosys AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| |
Collapse
|
14
|
Navarrete-Perea J, Yu Q, Gygi SP, Paulo JA. Streamlined Tandem Mass Tag (SL-TMT) Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling Using Tandem Mass Tag-Synchronous Precursor Selection-MS3. J Proteome Res 2018; 17:2226-2236. [PMID: 29734811 DOI: 10.1021/acs.jproteome.8b00217] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) coupled toisobaric labeling has developed rapidly into a powerful strategy for high-throughput protein quantification. Sample multiplexing and exceptional sensitivity allow for the quantification of tens of thousands of peptides and, by inference, thousands of proteins from multiple samples in a single MS experiment. Accurate quantification demands a consistent and robust sample-preparation strategy. Here, we present a detailed workflow for SPS-MS3-based quantitative abundance profiling of tandem mass tag (TMT)-labeled proteins and phosphopeptides that we have named the streamlined (SL)-TMT protocol. We describe a universally applicable strategy that requires minimal individual sample processing and permits the seamless addition of a phosphopeptide enrichment step ("mini-phos") with little deviation from the deep proteome analysis. To showcase our workflow, we profile the proteome of wild-type Saccharomyces cerevisiae yeast grown with either glucose or pyruvate as the carbon source. Here, we have established a streamlined TMT protocol that enables deep proteome and medium-scale phosphoproteome analysis.
Collapse
Affiliation(s)
- José Navarrete-Perea
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Qing Yu
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Steven P Gygi
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|