1
|
Habibpourmehraban F, Masoomi-Aladizgeh F, Haynes PA. Effect of ABA Pre-Treatment on Rice Plant Transcriptome Response to Multiple Abiotic Stress. Biomolecules 2023; 13:1554. [PMID: 37892236 PMCID: PMC10604926 DOI: 10.3390/biom13101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Half of the world's population depends on rice plant cultivation, yet environmental stresses continue to substantially impact the production of one of our most valuable staple foods. The aim of this study was to investigate the changes in the transcriptome of the IAC1131 rice genotype when exposed to a suite of multiple abiotic stresses, either with or without pre-treatment with the plant hormone ABA (Abscisic acid). Four groups of IAC1131 rice plants were grown including control plants incubated with ABA, non-ABA-incubated control plants, stressed plants incubated with ABA, and non-ABA-incubated stressed plants, with leaf samples harvested after 0 days (control) and 4 days (stressed). We found that high concentrations of ABA applied exogenously to the control plants under normal conditions did not alter the IAC1131 transcriptome profile significantly. The observed changes in the transcriptome of the IAC1131 plants in response to multiple abiotic stress were made even more pronounced by ABA pre-treatment, which induced the upregulation of a significant number of additional genes. Although ABA application impacted the plant transcriptome, multiple abiotic stress was the dominant factor in modifying gene expression in the IAC1131 plants. Exogenous ABA application may mitigate the effects of stress through ABA-dependent signalling pathways related to biological photosynthesis functions. Pre-treatment with ABA alters the photosynthesis function negatively by reducing stomatal conductance, therefore helping plants to conserve the energy required for survival under unfavourable environmental conditions.
Collapse
Affiliation(s)
- Fatemeh Habibpourmehraban
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (F.H.); (F.M.-A.)
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Farhad Masoomi-Aladizgeh
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (F.H.); (F.M.-A.)
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (F.H.); (F.M.-A.)
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
2
|
Habibpourmehraban F, Wu Y, Masoomi-Aladizgeh F, Amirkhani A, Atwell BJ, Haynes PA. Pre-Treatment of Rice Plants with ABA Makes Them More Tolerant to Multiple Abiotic Stress. Int J Mol Sci 2023; 24:ijms24119628. [PMID: 37298579 DOI: 10.3390/ijms24119628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Multiple abiotic stress is known as a type of environmental unfavourable condition maximizing the yield and growth gap of crops compared with the optimal condition in both natural and cultivated environments. Rice is the world's most important staple food, and its production is limited the most by environmental unfavourable conditions. In this study, we investigated the pre-treatment of abscisic acid (ABA) on the tolerance of the IAC1131 rice genotype to multiple abiotic stress after a 4-day exposure to combined drought, salt and extreme temperature treatments. A total of 3285 proteins were identified and quantified across the four treatment groups, consisting of control and stressed plants with and without pre-treatment with ABA, with 1633 of those proteins found to be differentially abundant between groups. Compared with the control condition, pre-treatment with the ABA hormone significantly mitigated the leaf damage against combined abiotic stress at the proteome level. Furthermore, the application of exogenous ABA did not affect the proteome profile of the control plants remarkably, while the results were different in stress-exposed plants by a greater number of proteins changed in abundance, especially those which were increased. Taken together, these results suggest that exogenous ABA has a potential priming effect for enhancing the rice seedlings' tolerance against combined abiotic stress, mainly by affecting stress-responsive mechanisms dependent on ABA signalling pathways in plants.
Collapse
Affiliation(s)
- Fatemeh Habibpourmehraban
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yunqi Wu
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Farhad Masoomi-Aladizgeh
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ardeshir Amirkhani
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
3
|
Multiple Abiotic Stresses Applied Simultaneously Elicit Distinct Responses in Two Contrasting Rice Cultivars. Int J Mol Sci 2022; 23:ijms23031739. [PMID: 35163659 PMCID: PMC8836074 DOI: 10.3390/ijms23031739] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Rice crops are often subject to multiple abiotic stresses simultaneously in both natural and cultivated environments, resulting in yield reductions beyond those expected from single stress. We report physiological changes after a 4 day exposure to combined drought, salt and extreme temperature treatments, following a 2 day salinity pre-treatment in two rice genotypes—Nipponbare (a paddy rice) and IAC1131 (an upland landrace). Stomata closed after two days of combined stresses, causing intercellular CO2 concentrations and assimilation rates to diminish rapidly. Abscisic acid (ABA) levels increased at least five-fold but did not differ significantly between the genotypes. Tandem Mass Tag isotopic labelling quantitative proteomics revealed 6215 reproducibly identified proteins in mature leaves across the two genotypes and three time points (0, 2 and 4 days of stress). Of these, 987 were differentially expressed due to stress (cf. control plants), including 41 proteins that changed significantly in abundance in all stressed plants. Heat shock proteins, late embryogenesis abundant proteins and photosynthesis-related proteins were consistently responsive to stress in both Nipponbare and IAC1131. Remarkably, even after 2 days of stress there were almost six times fewer proteins differentially expressed in IAC1131 than Nipponbare. This contrast in the translational response to multiple stresses is consistent with the known tolerance of IAC1131 to dryland conditions.
Collapse
|
4
|
Moradi A, Dai S, Wong EOY, Zhu G, Yu F, Lam HM, Wang Z, Burlingame A, Lin C, Afsharifar A, Yu W, Wang T, Li N. Isotopically Dimethyl Labeling-Based Quantitative Proteomic Analysis of Phosphoproteomes of Soybean Cultivars. Biomolecules 2021; 11:1218. [PMID: 34439883 PMCID: PMC8393417 DOI: 10.3390/biom11081218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Isotopically dimethyl labeling was applied in a quantitative post-translational modification (PTM) proteomic study of phosphoproteomic changes in the drought responses of two contrasting soybean cultivars. A total of 9457 phosphopeptides were identified subsequently, corresponding to 4571 phosphoprotein groups and 3889 leading phosphoproteins, which contained nine kinase families consisting of 279 kinases. These phosphoproteins contained a total of 8087 phosphosites, 6106 of which were newly identified and constituted 54% of the current soybean phosphosite repository. These phosphosites were converted into the highly conserved kinase docking sites by bioinformatics analysis, which predicted six kinase families that matched with those newly found nine kinase families. The overly post-translationally modified proteins (OPP) occupies 2.1% of these leading phosphoproteins. Most of these OPPs are photoreceptors, mRNA-, histone-, and phospholipid-binding proteins, as well as protein kinase/phosphatases. The subgroup population distribution of phosphoproteins over the number of phosphosites of phosphoproteins follows the exponential decay law, Y = 4.13e-0.098X - 0.04. Out of 218 significantly regulated unique phosphopeptide groups, 188 phosphoproteins were regulated by the drought-tolerant cultivar under the water loss condition. These significantly regulated phosphoproteins (SRP) are mainly enriched in the biological functions of water transport and deprivation, methionine metabolic processes, photosynthesis/light reaction, and response to cadmium ion, osmotic stress, and ABA response. Seventeen and 15 SRPs are protein kinases/phosphatases and transcription factors, respectively. Bioinformatics analysis again revealed that three members of the calcium dependent protein kinase family (CAMK family), GmSRK2I, GmCIPK25, and GmAKINβ1 kinases, constitute a phosphor-relay-mediated signal transduction network, regulating ion channel activities and many nuclear events in this drought-tolerant cultivar, which presumably contributes to the development of the soybean drought tolerance under water deprivation process.
Collapse
Affiliation(s)
- Atieh Moradi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; (A.M.); (E.O.Y.W.); (G.Z.)
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran
| | - Shuaijian Dai
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China;
| | - Emily Oi Ying Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; (A.M.); (E.O.Y.W.); (G.Z.)
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; (A.M.); (E.O.Y.W.); (G.Z.)
| | - Fengchao Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China;
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA;
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA;
| | - Chengtao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA;
| | - Alireza Afsharifar
- Plant Virology Research Centre, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran;
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China;
| | - Tingliang Wang
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; (A.M.); (E.O.Y.W.); (G.Z.)
- The HKUST Shenzhen Research Institut, Shenzhen 518057, China
| |
Collapse
|
5
|
Ngugi-Dawit A, Njaci I, Higgins TJV, Williams B, Ghimire SR, Mundree SG, Hoang LTM. Comparative TMT Proteomic Analysis Unveils Unique Insights into Helicoverpa armigera (Hübner) Resistance in Cajanus scarabaeoides (L.) Thouars. Int J Mol Sci 2021; 22:5941. [PMID: 34073052 PMCID: PMC8198728 DOI: 10.3390/ijms22115941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Pigeonpea [Cajanus cajan (L.) Millspaugh] is an economically important legume playing a crucial role in the semi-arid tropics. Pigeonpea is susceptible to Helicoverpa armigera (Hübner), which causes devastating yield losses. This pest is developing resistance to many commercially available insecticides. Therefore, crop wild relatives of pigeonpea, are being considered as potential sources of genes to expand the genetic base of cultivated pigeonpea to improve traits such as host plant resistance to pests and pathogens. Quantitative proteomic analysis was conducted using the tandem mass tag platform to identify differentially abundant proteins between IBS 3471 and ICPL 87 tolerant accession and susceptible variety to H. armigera, respectively. Leaf proteome were analysed at the vegetative and flowering/podding growth stages. H. armigera tolerance in IBS 3471 appeared to be related to enhanced defence responses, such as changes in secondary metabolite precursors, antioxidants, and the phenylpropanoid pathway. The development of larvae fed on an artificial diet with IBS 3471 lyophilised leaves showed similar inhibition with those fed on an artificial diet with quercetin concentrations with 32 mg/25 g of artificial diet. DAB staining (3,3'-diaminobenzidine) revealed a rapid accumulation of reactive oxygen species in IBS 3471. We conclude that IBS 3471 is an ideal candidate for improving the genetic base of cultivated pigeonpea, including traits for host plant resistance.
Collapse
Affiliation(s)
- Abigail Ngugi-Dawit
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology (QUT), Brisbane 4001, Australia;
| | - Isaac Njaci
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, P.O. 30709, Nairobi 00100, Kenya; (I.N.); (S.R.G.)
| | - Thomas J. V. Higgins
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Canberra 2601, Australia;
| | - Brett Williams
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology (QUT), Brisbane 4001, Australia;
| | - Sita R. Ghimire
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, P.O. 30709, Nairobi 00100, Kenya; (I.N.); (S.R.G.)
| | - Sagadevan G. Mundree
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology (QUT), Brisbane 4001, Australia;
| | - Linh Thi My Hoang
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology (QUT), Brisbane 4001, Australia;
| |
Collapse
|
6
|
Wang B, Li N, Wang J, Huang S, Tang Y, Yang S, Yang T, Wang Q, Yu Q, Gao J. iTRAQ-Based Proteomics Reveals that the Tomato ms10 35 Gene Causes Male Sterility through Compromising Fat Acid Metabolism. Proteomics 2020; 20:e1900213. [PMID: 32104964 DOI: 10.1002/pmic.201900213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/16/2020] [Indexed: 11/11/2022]
Abstract
So far, over 50 spontaneous male sterile mutants of tomato have been described and most of them are categorized as genetic male sterility. To date, the mechanism of tomato genetic male sterility remained unclear. In this study, differential proteomic analysis is performed between genetic male sterile line (2-517), which carries the male sterility (ms1035 ) gene, and its wild-type (VF-11) using isobaric tags for relative and absolute quantification-based strategy. A total of 8272 proteins are quantified in the 2-517 and VF-11 lines at the floral bud and florescence stages. These proteins are involved in different cellular and metabolic processes, which express obvious functional tendencies toward the hydroxylation of the ω-carbon in fatty acids, the tricarboxylic acid cycle, the glycolytic, and pentose phosphate pathways. Based on the results, a protein network explaining the mechanisms of tomato genetic male sterility is proposed, finding the compromising fat acid metabolism may cause the male sterility. These results are confirmed by parallel reaction monitoring, quantitative Real-time PCR (qRT-PCR), and physiological assays. Taken together, these results provide new insights into the metabolic pathway of anther abortion induced by ms1035 and offer useful clues to identify the crucial proteins involved in genetic male sterility in tomato.
Collapse
Affiliation(s)
- Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Shaoyong Huang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Yaping Tang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Shengbao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Qiang Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Jie Gao
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| |
Collapse
|
7
|
Yichie Y, Hasan MT, Tobias PA, Pascovici D, Goold HD, Van Sluyter SC, Roberts TH, Atwell BJ. Salt-Treated Roots of Oryza australiensis Seedlings are Enriched with Proteins Involved in Energetics and Transport. Proteomics 2019; 19:e1900175. [PMID: 31475433 DOI: 10.1002/pmic.201900175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Indexed: 11/08/2022]
Abstract
Salinity is a major constraint on rice productivity worldwide. However, mechanisms of salt tolerance in wild rice relatives are unknown. Root microsomal proteins are extracted from two Oryza australiensis accessions contrasting in salt tolerance. Whole roots of 2-week-old seedlings are treated with 80 mM NaCl for 30 days to induce salt stress. Proteins are quantified by tandem mass tags (TMT) and triple-stage Mass Spectrometry. More than 200 differentially expressed proteins between the salt-treated and control samples in the two accessions (p-value <0.05) are found. Gene Ontology (GO) analysis shows that proteins categorized as "metabolic process," "transport," and "transmembrane transporter" are highly responsive to salt treatment. In particular, mitochondrial ATPases and SNARE proteins are more abundant in roots of the salt-tolerant accession and responded strongly when roots are exposed to salinity. mRNA quantification validated the elevated protein abundances of a monosaccharide transporter and an antiporter observed in the salt-tolerant genotype. The importance of the upregulated monosaccharide transporter and a VAMP-like protein by measuring salinity responses of two yeast knockout mutants for genes homologous to those encoding these proteins in rice are confirmed. Potential new mechanisms of salt tolerance in rice, with implications for breeding of elite cultivars are also discussed.
Collapse
Affiliation(s)
- Yoav Yichie
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Mafruha T Hasan
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Peri A Tobias
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Hugh D Goold
- NSW Department of Primary Industries, Macquarie University, Sydney, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Thomas H Roberts
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|