1
|
Kaab SB, Martin M, Degand H, Foncoux B, Morsomme P, Jijakli MH. Label free quantitative proteomic analysis reveals the physiological and biochemical responses of Arabidopsis thaliana to cinnamon essential oil. Sci Rep 2025; 15:6156. [PMID: 39979395 PMCID: PMC11842708 DOI: 10.1038/s41598-025-89368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The increasing use of synthetic chemical herbicides has resulted in environmental, human and animal health issues. This has also led to the development of herbicide resistance in weed populations. The use of essential oils (EOs) can contribute to the development of effective, eco-friendly and nature-based alternatives to these chemical products due to their phytotoxicity and multisite action. Our study aimed to evaluate the proteomic response of Arabidopsis thaliana (A. thaliana) leaves to the application of a cinnamon essential oil (CEO) emulsion. The results showed that the application of CEO emulsion at a concentration of 6% severely impacted the proteomic profile of A. thaliana, especially for membrane proteins and those involved in the photosynthesis process. Interestingly, 40 proteins were identified and listed as the most differentially accumulated proteins in the leaves of A. thaliana. CEO decreased the expression of all the proteins associated with catabolism and anabolism processes while simultaneously increasing the expression levels of proteins involved in the response to oxidative stress. Overall, these findings allowed us to obtain a global view of the proteome response to CEO, opening promising perspectives for the development of natural herbicides, especially given the low probability of developing resistant weed populations.
Collapse
Affiliation(s)
- Sofiene Ben Kaab
- Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium.
| | - Manon Martin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Bérénice Foncoux
- Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium
- APEO SRL (Agronomical Plant Extracts & Essential Oils), Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - M Haissam Jijakli
- Integrated and Urban Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium
| |
Collapse
|
2
|
Kumar R, Sagar V, Verma VC, Kumari M, Gujjar RS, Goswami SK, Kumar Jha S, Pandey H, Dubey AK, Srivastava S, Singh SP, Mall AK, Pathak AD, Singh H, Jha PK, Prasad PVV. Drought and salinity stresses induced physio-biochemical changes in sugarcane: an overview of tolerance mechanism and mitigating approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1225234. [PMID: 37645467 PMCID: PMC10461627 DOI: 10.3389/fpls.2023.1225234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Sugarcane productivity is being hampered globally under changing environmental scenarios like drought and salinity. The highly complex nature of the plant responses against these stresses is determined by a variety of factors such as genotype, developmental phase of the plant, progression rate and stress, intensity, and duration. These factors influence plant responses and can determine whether mitigation approaches associated with acclimation are implemented. In this review, we attempt to summarize the effects of drought and salinity on sugarcane growth, specifically on the plant's responses at various levels, viz., physiological, biochemical, and metabolic responses, to these stresses. Furthermore, mitigation strategies for dealing with these stresses have been discussed. Despite sugarcane's complex genomes, conventional breeding approaches can be utilized in conjunction with molecular breeding and omics technologies to develop drought- and salinity-tolerant cultivars. The significant role of plant growth-promoting bacteria in sustaining sugarcane productivity under drought and salinity cannot be overlooked.
Collapse
Affiliation(s)
- Rajeev Kumar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Vidya Sagar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, India
| | | | - Mala Kumari
- Integral Institute of Agriculture Science and Technology, Integral University, Lucknow, India
| | - Ranjit Singh Gujjar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Sanjay K. Goswami
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Sudhir Kumar Jha
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulses Research, Kanpur, India
| | - Himanshu Pandey
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Abhishek Kumar Dubey
- Indian Council of Agricultural Research (ICAR)-Research Complex for Eastern Region, Patna, India
| | - Sangeeta Srivastava
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - S. P. Singh
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Ashutosh K. Mall
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Ashwini Dutt Pathak
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Hemlata Singh
- Department of Botany, Plant Physiology & Biochemistry, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
3
|
Li AM, Liao F, Wang M, Chen ZL, Qin CX, Huang RQ, Verma KK, Li YR, Que YX, Pan YQ, Huang DL. Transcriptomic and Proteomic Landscape of Sugarcane Response to Biotic and Abiotic Stressors. Int J Mol Sci 2023; 24:ijms24108913. [PMID: 37240257 DOI: 10.3390/ijms24108913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ruo-Qi Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Xiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Gutiérrez N, Pégard M, Balko C, Torres AM. Genome-wide association analysis for drought tolerance and associated traits in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1091875. [PMID: 36818887 PMCID: PMC9928957 DOI: 10.3389/fpls.2023.1091875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Faba bean (Vicia faba L.) is an important high protein legume adapted to diverse climatic conditions with multiple benefits for the overall sustainability of the cropping systems. Plant-based protein demand is being expanded and faba bean is a good candidate to cover this need. However, the crop is very sensitive to abiotic stresses, especially drought, which severely affects faba bean yield and development worldwide. Therefore, identifying genes associated with drought stress tolerance is a major challenge in faba bean breeding. Although the faba bean response to drought stress has been widely studied, the molecular approaches to improve drought tolerance in this crop are still limited. Here we built on recent genomic advances such as the development of the first high-density SNP genotyping array, to conduct a genome-wide association study (GWAS) using thousands of genetic polymorphisms throughout the entire faba bean genome. A worldwide collection of 100 faba bean accessions was grown under control and drought conditions and 10 morphological, phenological and physiological traits were evaluated to identify single nucleotide polymorphism (SNP) markers associated with drought tolerance. We identified 29 SNP markers significantly correlated with these traits under drought stress conditions. The flanking sequences were blasted to the Medicago truncatula reference genomes in order to annotate potential candidate genes underlying the causal variants. Three of the SNPs for chlorophyll content after the stress, correspond to uncharacterized proteins indicating the presence of novel genes associated with drought tolerance in faba bean. The significance of stress-inducible signal transducers provides valuable information on the possible mechanisms underlying the faba bean response to drought stress, thus providing a foundation for future marker-assisted breeding in the crop.
Collapse
Affiliation(s)
- Natalia Gutiérrez
- Área de Mejora y Biotecnología, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
| | - Marie Pégard
- INRAE P3F, 86600 Lusignan, France, INRA, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | - Christiane Balko
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Sanitz, Germany
| | - Ana M. Torres
- Área de Mejora y Biotecnología, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
| |
Collapse
|
5
|
Cold-Induced Physiological and Biochemical Alternations and Proteomic Insight into the Response of Saccharum spontaneum to Low Temperature. Int J Mol Sci 2022; 23:ijms232214244. [PMID: 36430736 PMCID: PMC9692960 DOI: 10.3390/ijms232214244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Sugarcane, a cash crop, is easily affected by low temperature, which results in a decrease in yield and sugar production. Breeding a new variety with cold tolerance is an essential strategy to reduce loss from cold stress. The identification of germplasms and genes/proteins with cold tolerance is a vital step in breeding sugarcane varieties with cold tolerance via a conventional program and molecular technology. In this study, the physiological and biochemical indices of 22 genotypes of S. spontaneum were measured, and the membership function analysis method was used to comprehensively evaluate the cold tolerance ability of these genotypes. The physiological and biochemical indices of these S. spontaneum genotypes showed a sophisticated response to low temperature. On the basis of the physiological and chemical indices, the genotypes were classified into different cold tolerance groups. Then, the high-tolerance genotype 1027 and the low-tolerance genotype 3217 were selected for DIA-based proteomic analysis by subjecting them to low temperature. From the four comparison groups, 1123, 1341, 751, and 1693 differentially abundant proteins (DAPs) were identified, respectively. The DAPs based on genotypes or treatments participated in distinct metabolic pathways. Through detailed analysis of the DAPs, some proteins related to protein homeostasis, carbohydrate and energy metabolism, amino acid transport and metabolism, signal transduction, and the cytoskeleton may be involved in sugarcane tolerance to cold stress. Furthermore, five important proteins related to cold tolerance were discovered for the first time in this study. This work not only provides the germplasms and candidate target proteins for breeding sugarcane varieties with cold tolerance via a conventional program and molecular breeding, but also helps to accelerate the determination of the molecular mechanism underlying cold tolerance in sugarcane.
Collapse
|
6
|
Kausar R, Wang X, Komatsu S. Crop Proteomics under Abiotic Stress: From Data to Insights. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212877. [PMID: 36365330 PMCID: PMC9657731 DOI: 10.3390/plants11212877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/22/2022] [Indexed: 06/09/2023]
Abstract
Food security is a major challenge in the present world due to erratic weather and climatic changes. Environmental stress negatively affects plant growth and development which leads to reduced crop yields. Technological advancements have caused remarkable improvements in crop-breeding programs. Proteins have an indispensable role in developing stress resilience and tolerance in crops. Genomic and biotechnological advancements have made the process of crop improvement more accurate and targeted. Proteomic studies provide the information required for such targeted approaches. The crosstalk among cellular components is being analyzed by subcellular proteomics. Additionally, the functional diversity of proteins is being unraveled by post-translational modifications during abiotic stress. The exploration of precise cellular responses and the networking among different cellular organelles help in the prediction of signaling pathways and protein-protein interactions. High-throughput mass-spectrometry-based protein studies are now possible due to incremental advancements in mass-spectrometry techniques, sample protocols, and bioinformatic tools as well as the increasing availability of plant genome sequence information for multiple species. In this review, the key role of proteomic analysis in identifying the abiotic-stress-responsive mechanisms in various crops was summarized. The development and availability of advanced computational tools were discussed in detail. The highly variable protein responses among different crops have provided a wide avenue for molecular-marker-assisted genetic buildup studies to develop smart, high-yielding, and stress-tolerant varieties to cope with food-security challenges.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
7
|
Abstract
Proteins are intimately involved in executing and controlling virtually all cellular processes. To understand the molecular mechanisms that underlie plant phenotypes, it is essential to investigate protein expression, interactions, and modifications, to name a few. The proteome is highly dynamic in time and space, and a plethora of protein modifications, protein interactions, and network constellations are at play under specific conditions and developmental stages. Analysis of proteomes aims to characterize the entire protein complement of a particular cell type, tissue, or organism-a challenging task, given the dynamic nature of the proteome. Modern mass spectrometry-based proteomics technology can be used to address this complexity at a system-wide scale by the global identification and quantification of thousands of proteins. In this review, we present current methods and technologies employed in mass spectrometry-based proteomics and provide examples of dynamic changes in the plant proteome elucidated by proteomic approaches.
Collapse
Affiliation(s)
- Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany;
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| |
Collapse
|
8
|
Leetanasaksakul K, Roytrakul S, Phaonakrop N, Kittisenachai S, Thaisakun S, Srithuanok N, Sriroth K, Soulard L. Discovery of potential protein biomarkers associated with sugarcane white leaf disease susceptibility using a comparative proteomic approach. PeerJ 2022; 10:e12740. [PMID: 35036104 PMCID: PMC8742537 DOI: 10.7717/peerj.12740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023] Open
Abstract
Sugarcane white leaf disease (SCWLD) is caused by phytoplasma, a serious sugarcane phytoplasma pathogen, which causes significant decreases in crop yield and sugar quality. The identification of proteins involved in the defense mechanism against SCWLD phytoplasma may help towards the development of varieties resistant to SCWLD. We investigated the proteomes of four sugarcane varieties with different levels of susceptibility to SCWLD phytoplasma infection, namely K88-92 and K95-84 (high), KK3 (moderate), and UT1 (low) by quantitative label-free nano-liquid chromatography-tandem mass spectrometry (nano LC-MS/MS). A total of 248 proteins were identified and compared among the four sugarcane varieties. Two potential candidate protein biomarkers for reduced susceptibility to SCWLD phytoplasma were identified as proteins detected only in UT1. The functions of these proteins are associated with protein folding, metal ion binding, and oxidoreductase. The candidate biomarkers could be useful for further study of the sugarcane defense mechanism against SCWLD phytoplasma, and in molecular and conventional breeding strategies for variety improvement.
Collapse
Affiliation(s)
- Kantinan Leetanasaksakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Suthathip Kittisenachai
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Nitiya Srithuanok
- Mitr Phol Innovation and Research Center, Khoksa-at, Phu Khiao, Chaiyaphum, Thailand
| | - Klanarong Sriroth
- Mitr Phol Innovation and Research Center, Khoksa-at, Phu Khiao, Chaiyaphum, Thailand
| | - Laurent Soulard
- Mitr Phol Innovation and Research Center, Khoksa-at, Phu Khiao, Chaiyaphum, Thailand
| |
Collapse
|
9
|
Salvato F, Figueiredo R, Mazzafera P. Nuclei Enrichment from Sugarcane Stems for Proteomics Analyses. Methods Mol Biol 2022; 2469:79-87. [PMID: 35508831 DOI: 10.1007/978-1-0716-2185-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclei enrichment procedures enable a large variety of investigations. These studies include structural characterization of nuclear proteins, identification of posttranslational modifications, and regulation of stress or development-related gene expression. Successful enrichment of nuclei samples from plant tissues is crucial for a comprehensive analysis of the plant nuclear proteome. Here, we describe a method for nuclei enrichment from sugarcane stems and its assessment by western blot.
Collapse
Affiliation(s)
- Fernanda Salvato
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, USA
| | - Raquel Figueiredo
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
- Department of Biology, Faculty of Sciences and LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.
- Department of Crop Science, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil.
| |
Collapse
|
10
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
11
|
Shabbir R, Javed T, Afzal I, Sabagh AE, Ali A, Vicente O, Chen P. Modern Biotechnologies: Innovative and Sustainable Approaches for the Improvement of Sugarcane Tolerance to Environmental Stresses. AGRONOMY 2021; 11:1042. [DOI: 10.3390/agronomy11061042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Sugarcane (Saccharum spp.) is one of the most important industrial cash crops, contributing to the world sugar industry and biofuel production. It has been cultivated and improved from prehistoric times through natural selection and conventional breeding and, more recently, using the modern tools of genetic engineering and biotechnology. However, the heterogenicity, complex poly-aneuploid genome and susceptibility of sugarcane to different biotic and abiotic stresses represent impediments that require us to pay greater attention to the improvement of the sugarcane crop. Compared to traditional breeding, recent advances in breeding technologies (molecular marker-assisted breeding, sugarcane transformation, genome-editing and multiple omics technologies) can potentially improve sugarcane, especially against environmental stressors. This article will focus on efficient modern breeding technologies, which provide crucial clues for the engineering of sugarcane cultivars resistant to environmental stresses.
Collapse
|
12
|
Songsomboon K, Brenton Z, Heuser J, Kresovich S, Shakoor N, Mockler T, Cooper EA. Genomic patterns of structural variation among diverse genotypes of Sorghum bicolor and a potential role for deletions in local adaptation. G3-GENES GENOMES GENETICS 2021; 11:6265466. [PMID: 33950177 PMCID: PMC8495935 DOI: 10.1093/g3journal/jkab154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 12/04/2022]
Abstract
Genomic structural mutations, especially deletions, are an important source of variation in many species and can play key roles in phenotypic diversification and evolution. Previous work in many plant species has identified multiple instances of structural variations (SVs) occurring in or near genes related to stress response and disease resistance, suggesting a possible role for SVs in local adaptation. Sorghum [Sorghum bicolor (L.) Moench] is one of the most widely grown cereal crops in the world. It has been adapted to an array of different climates as well as bred for multiple purposes, resulting in a striking phenotypic diversity. In this study, we identified genome-wide SVs in the Biomass Association Panel, a collection of 347 diverse sorghum genotypes collected from multiple countries and continents. Using Illumina-based, short-read whole-genome resequencing data from every genotype, we found a total of 24,648 SVs, including 22,359 deletions. The global site frequency spectrum of deletions and other types of SVs fit a model of neutral evolution, suggesting that the majority of these mutations were not under any types of selection. Clustering results based on single nucleotide polymorphisms separated the genotypes into eight clusters which largely corresponded with geographic origins, with many of the large deletions we uncovered being unique to a single cluster. Even though most deletions appeared to be neutral, a handful of cluster-specific deletions were found in genes related to biotic and abiotic stress responses, supporting the possibility that at least some of these deletions contribute to local adaptation in sorghum.
Collapse
Affiliation(s)
- Kittikun Songsomboon
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223 USA.,North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Zachary Brenton
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634 USA
| | - James Heuser
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223 USA.,North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Stephen Kresovich
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634 USA
| | - Nadia Shakoor
- Donald Danforth Plant Science Center, St. Louis, MO, 63132 USA
| | - Todd Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132 USA
| | - Elizabeth A Cooper
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223 USA.,North Carolina Research Campus, Kannapolis, NC 28081 USA
| |
Collapse
|
13
|
Knockout of Auxin Response Factor SlARF4 Improves Tomato Resistance to Water Deficit. Int J Mol Sci 2021; 22:ijms22073347. [PMID: 33805879 PMCID: PMC8037468 DOI: 10.3390/ijms22073347] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Auxin response factors (ARFs) play important roles in various plant physiological processes; however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this study, SlARF4, a member of the ARF family, was functionally characterized under water deficit. Real-time fluorescence quantitative polymerase chain reaction (PCR) and β-glucuronidase (GUS) staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 (CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4 mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related genes, were differentially expressed between the wildtype and arf4 mutants under water deficit and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these genes' promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle development and ultimately improving plant resistance to water deficit.
Collapse
|
14
|
Calderan-Rodrigues MJ, de Barros Dantas LL, Cheavegatti Gianotto A, Caldana C. Applying Molecular Phenotyping Tools to Explore Sugarcane Carbon Potential. FRONTIERS IN PLANT SCIENCE 2021; 12:637166. [PMID: 33679852 PMCID: PMC7935522 DOI: 10.3389/fpls.2021.637166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
Sugarcane (Saccharum spp.), a C4 grass, has a peculiar feature: it accumulates, gradient-wise, large amounts of carbon (C) as sucrose in its culms through a complex pathway. Apart from being a sustainable crop concerning C efficiency and bioenergetic yield per hectare, sugarcane is used as feedstock for producing ethanol, sugar, high-value compounds, and products (e.g., polymers and succinate), and bioelectricity, earning the title of the world's leading biomass crop. Commercial cultivars, hybrids bearing high levels of polyploidy, and aneuploidy, are selected from a large number of crosses among suitable parental genotypes followed by the cloning of superior individuals among the progeny. Traditionally, these classical breeding strategies have been favoring the selection of cultivars with high sucrose content and resistance to environmental stresses. A current paradigm change in sugarcane breeding programs aims to alter the balance of C partitioning as a means to provide more plasticity in the sustainable use of this biomass for metabolic engineering and green chemistry. The recently available sugarcane genetic assemblies powered by data science provide exciting perspectives to increase biomass, as the current sugarcane yield is roughly 20% of its predicted potential. Nowadays, several molecular phenotyping tools can be applied to meet the predicted sugarcane C potential, mainly targeting two competing pathways: sucrose production/storage and biomass accumulation. Here we discuss how molecular phenotyping can be a powerful tool to assist breeding programs and which strategies could be adopted depending on the desired final products. We also tackle the advances in genetic markers and mapping as well as how functional genomics and genetic transformation might be able to improve yield and saccharification rates. Finally, we review how "omics" advances are promising to speed up plant breeding and reach the unexplored potential of sugarcane in terms of sucrose and biomass production.
Collapse
Affiliation(s)
| | | | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Camila Caldana,
| |
Collapse
|
15
|
Figueiredo R, Portilla Llerena JP, Kiyota E, Ferreira SS, Cardeli BR, de Souza SCR, Dos Santos Brito M, Sodek L, Cesarino I, Mazzafera P. The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2020; 104:411-427. [PMID: 32813231 DOI: 10.1007/s11103-020-01048-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE A sugarcane MYB present in the culm induces suberin biosynthesis and is involved both with fatty acid and phenolics metabolism. Few transcription factors have been described as regulators of cell wall polymers deposition in C4 grasses. Particularly, regulation of suberin biosynthesis in this group of plants remains poorly understood. Here, we showed that the sugarcane MYB transcription factor ShMYB78 is an activator of suberin biosynthesis and deposition. ShMYB78 was identified upon screening genes whose expression was upregulated in sugarcane internodes undergoing suberization during culm development or triggered by wounding. Agrobacterium-mediated transient expression of ShMYB78 in Nicotiana benthamiana leaves induced the ectopic deposition of suberin and its aliphatic and aromatic monomers. Further, the expression of suberin-related genes was induced by ShMYB78 heterologous expression in Nicotiana benthamiana leaves. ShMYB78 was shown to be a nuclear protein based on its presence in sugarcane internode nuclear protein extracts, and protoplast transactivation assays demonstrated that ShMYB78 activates the promoters of the sugarcane suberin biosynthetic genes β-ketoacyl-CoA synthase (ShKCS20) and caffeic acid-O-methyltransferase (ShCOMT). Our results suggest that ShMYB78 may be involved in the transcriptional regulation of suberin deposition, from fatty acid metabolism to phenylpropanoid biosynthesis, in sugarcane internodes.
Collapse
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil.
- Department of Biology, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
| | - Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Eduardo Kiyota
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Sávio Siqueira Ferreira
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Bárbara Rocha Cardeli
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Sarah Caroline Ribeiro de Souza
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
- Department of Botany, Federal University of São Carlos, PO Box 676, São Carlos, São Paulo, 13565-905, Brazil
| | - Michael Dos Santos Brito
- Institute of Science and Technology, Federal University of São Paulo, Campus São José dos Campos, São José dos Campos, 12231-280, Brazil
| | - Ladaslav Sodek
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
- Department of Crop Science, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, 13418-900, Brazil
| |
Collapse
|
16
|
Ali A, Khan M, Sharif R, Mujtaba M, Gao SJ. Sugarcane Omics: An Update on the Current Status of Research and Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2019; 8:E344. [PMID: 31547331 PMCID: PMC6784093 DOI: 10.3390/plants8090344] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
Sugarcane is an important crop from Poaceae family, contributing about 80% of the total world's sucrose with an annual value of around US$150 billion. In addition, sugarcane is utilized as a raw material for the production of bioethanol, which is an alternate source of renewable energy. Moving towards sugarcane omics, a remarkable success has been achieved in gene transfer from a wide variety of plant and non-plant sources to sugarcane, with the accessibility of efficient transformation systems, selectable marker genes, and genetic engineering gears. Genetic engineering techniques make possible to clone and characterize useful genes and also to improve commercially important traits in elite sugarcane clones that subsequently lead to the development of an ideal cultivar. Sugarcane is a complex polyploidy crop, and hence no single technique has been found to be the best for the confirmation of polygenic and phenotypic characteristics. To better understand the application of basic omics in sugarcane regarding agronomic characters and industrial quality traits as well as responses to diverse biotic and abiotic stresses, it is important to explore the physiology, genome structure, functional integrity, and collinearity of sugarcane with other more or less similar crops/plants. Genetic improvements in this crop are hampered by its complex genome, low fertility ratio, longer production cycle, and susceptibility to several biotic and abiotic stresses. Biotechnology interventions are expected to pave the way for addressing these obstacles and improving sugarcane crop. Thus, this review article highlights up to date information with respect to how advanced data of omics (genomics, transcriptomic, proteomics and metabolomics) can be employed to improve sugarcane crops.
Collapse
Affiliation(s)
- Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mehran Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Punjab 32200, Pakistan
| | - Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|