1
|
Tang VT, Abbineni PS, Veiga Leprevost FD, Basrur V, Khoriaty R, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1- and SURF4-Dependent Secretory Cargoes. J Proteome Res 2023; 22:3439-3446. [PMID: 37844105 PMCID: PMC10629478 DOI: 10.1021/acs.jproteome.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 10/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles and tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells, whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif..
Collapse
Affiliation(s)
- Vi T. Tang
- Department
of Molecular and Integrative Physiology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Prabhodh S. Abbineni
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Microbiology and Immunology, Loyola University
Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | | | - Venkatesha Basrur
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rami Khoriaty
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian T. Emmer
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexey I. Nesvizhskii
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David Ginsburg
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Tang VT, Abbineni PS, Leprevost FDV, Basrur V, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1 and SURF4 dependent secretory cargoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535922. [PMID: 37066360 PMCID: PMC10104123 DOI: 10.1101/2023.04.06.535922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles/tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | | | | | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Bahl A, Ibrahim C, Plate K, Haase A, Dengjel J, Nymark P, Dumit VI. PROTEOMAS: a workflow enabling harmonized proteomic meta-analysis and proteomic signature mapping. J Cheminform 2023; 15:34. [PMID: 36935498 PMCID: PMC10024914 DOI: 10.1186/s13321-023-00710-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 03/21/2023] Open
Abstract
Toxicological evaluation of substances in regulation still often relies on animal experiments. Understanding the substances' mode-of-action is crucial to develop alternative test strategies. Omics methods are promising tools to achieve this goal. Until now, most attention was focused on transcriptomics, while proteomics is not yet routinely applied in toxicology despite the large number of datasets available in public repositories. Exploiting the full potential of these datasets is hampered by differences in measurement procedures and follow-up data processing. Here we present the tool PROTEOMAS, which allows meta-analysis of proteomic data from public origin. The workflow was designed for analyzing proteomic studies in a harmonized way and to ensure transparency in the analysis of proteomic data for regulatory purposes. It agrees with the Omics Reporting Framework guidelines of the OECD with the intention to integrate proteomics to other omic methods in regulatory toxicology. The overarching aim is to contribute to the development of AOPs and to understand the mode of action of substances. To demonstrate the robustness and reliability of our workflow we compared our results to those of the original studies. As a case study, we performed a meta-analysis of 25 proteomic datasets to investigate the toxicological effects of nanomaterials at the lung level. PROTEOMAS is an important contribution to the development of alternative test strategies enabling robust meta-analysis of proteomic data. This workflow commits to the FAIR principles (Findable, Accessible, Interoperable and Reusable) of computational protocols.
Collapse
Affiliation(s)
- Aileen Bahl
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Celine Ibrahim
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kristina Plate
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andrea Haase
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Verónica I Dumit
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
4
|
Control of Unconventional Secretion By The Autophagy Machinery. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Abbineni PS, Tang VT, da Veiga Leprevost F, Basrur V, Xiang J, Nesvizhskii AI, Ginsburg D. Identification of secreted proteins by comparison of protein abundance in conditioned media and cell lysates. Anal Biochem 2022; 655:114846. [PMID: 35973625 DOI: 10.1016/j.ab.2022.114846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022]
Abstract
Analysis of the full spectrum of secreted proteins in cell culture is complicated by leakage of intracellular proteins from damaged cells. To address this issue, we compared the abundance of individual proteins between the cell lysate and the conditioned medium, reasoning that secreted proteins should be relatively more abundant in the conditioned medium. Marked enrichment for signal-peptide-bearing proteins with increasing conditioned media to cell lysate ratio, as well loss of this signal following brefeldin A treatment, confirmed the sensitivity and specificity of this approach. The subset of proteins demonstrating increased conditioned media to cell lysate ratio in the presence of Brefeldin A identified candidates for unconventional secretion via a pathway independent of ER to Golgi trafficking.
Collapse
Affiliation(s)
| | - Vi T Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Jie Xiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Poschmann G, Bahr J, Schrader J, Stejerean-Todoran I, Bogeski I, Stühler K. Secretomics—A Key to a Comprehensive Picture of Unconventional Protein Secretion. Front Cell Dev Biol 2022; 10:878027. [PMID: 35392176 PMCID: PMC8980719 DOI: 10.3389/fcell.2022.878027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
For a long time, leaderless secreted proteins (LLSP) were neglected as artifacts derived from dying cells. It is now generally accepted that secretion of LLSP–as a part of the collective term unconventional protein secretion (UPS) - is an evolutionarily conserved process and that these LLSP are actively and selectively secreted from living cells bypassing the classical endoplasmic reticulum-Golgi pathway. However, the mechanism of UPS pathways, as well as the number of LLSP and which part of a protein is involved in the selection of LLSPs for secretion, are still enigmatic and await clarification. Secretomics-a proteomics-based approach to identify and quantify all proteins secreted by a cell-is inherently unbiased toward a particular secretion pathway and offers the opportunity to shed light on the UPS. Here, we will evaluate and present recent results of proteomic workflows allowing to obtain high-confident secretome data. Additionally, we address that cell culture conditions largely affect the composition of the secretome. This has to be kept in mind to control cell culture induced artifacts and adaptation stress in serum free conditions. Evaluation of click chemistry for secretome analysis of cells under serum-containing conditions showed a significant change in the cellular proteome with longer incubation time upon treatment with non-canonical amino acid azidohomoalanine. Finally, we showed that the number of LLSP far exceeds the number of secreted proteins annotated in Uniprot and ProteinAtlas. Thus, secretomics in combination with sophisticated microbioanalytical and sample preparation methods is well suited to provide a comprehensive picture of UPS.
Collapse
Affiliation(s)
- Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jasmin Bahr
- Department of Molecular Cardiology, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ioana Stejerean-Todoran
- Molecular Physiology, Institute for Cardiovascular Physiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute for Cardiovascular Physiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Kai Stühler,
| |
Collapse
|