1
|
Tian M, Li X, Yu L, Qian J, Bai X, Yang J, Deng R, Lu C, Zhao H, Liu Y. Glycosylation as an intricate post-translational modification process takes part in glycoproteins related immunity. Cell Commun Signal 2025; 23:214. [PMID: 40325416 PMCID: PMC12051319 DOI: 10.1186/s12964-025-02216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Protein glycosylation, the most ubiquitous and diverse type of post-translational modification in eukaryotic cells, proteins are input into endoplasmic reticulum and Golgi apparatus for sorting and modification with intricate quality control, are then output for diverse functional glycoproteins that are utilized by cells to precisely regulate various biological processes. In order to maintain the precise spatial structure of glycoprotein, misfolded and unfolded glycoproteins are recognized, segregated and degraded to ensure the fidelity of protein folding and maturation. This review enumerates the role of five immune-related glycoproteins and reveals the relevance of glycosylation to their antigen presentation, immune effector function, immune recognition, receptor binding and activation, and cell adhesion and migration. With the knowledgement of glycoproteins in immune responses and etiologies, we propose several relevant therapeutic strategies on targeting glycosylation process for immunotherapy.
Collapse
Affiliation(s)
- Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - JinXiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiuYun Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jue Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - RongJun Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Hevler JF, Heck AJR. Higher-Order Structural Organization of the Mitochondrial Proteome Charted by In Situ Cross-Linking Mass Spectrometry. Mol Cell Proteomics 2023; 22:100657. [PMID: 37805037 PMCID: PMC10651688 DOI: 10.1016/j.mcpro.2023.100657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Mitochondria are densely packed with proteins, of which most are involved physically or more transiently in protein-protein interactions (PPIs). Mitochondria host among others all enzymes of the Krebs cycle and the oxidative phosphorylation pathway and are foremost associated with cellular bioenergetics. However, mitochondria are also important contributors to apoptotic cell death and contain their own genome indicating that they play additionally an eminent role in processes beyond bioenergetics. Despite intense efforts in identifying and characterizing mitochondrial protein complexes by structural biology and proteomics techniques, many PPIs have remained elusive. Several of these (membrane embedded) PPIs are less stable in vitro hampering their characterization by most contemporary methods in structural biology. Particularly in these cases, cross-linking mass spectrometry (XL-MS) has proven valuable for the in-depth characterization of mitochondrial protein complexes in situ. Here, we highlight experimental strategies for the analysis of proteome-wide PPIs in mitochondria using XL-MS. We showcase the ability of in situ XL-MS as a tool to map suborganelle interactions and topologies and aid in refining structural models of protein complexes. We describe some of the most recent technological advances in XL-MS that may benefit the in situ characterization of PPIs even further, especially when combined with electron microscopy and structural modeling.
Collapse
Affiliation(s)
- Johannes F Hevler
- Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert J R Heck
- Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Crine SL, Acharya KR. Molecular basis of C-mannosylation - a structural perspective. FEBS J 2022; 289:7670-7687. [PMID: 34741587 DOI: 10.1111/febs.16265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 01/14/2023]
Abstract
The structural and functional diversity of proteins can be enhanced by numerous post-translational modifications. C-mannosylation is a rare form of glycosylation consisting of a single alpha or beta D-mannopyranose forming a carbon-carbon bond with the pyrrole ring of a tryptophan residue. Despite first being discovered in 1994, C-mannosylation is still poorly understood and 3D structures are available for only a fraction of the total predicted C-mannosylated proteins. Here, we present the first comprehensive review of C-mannosylated protein structures by analysing the data for all 10 proteins with C-mannosylation/s deposited in the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB). We analysed in detail the WXXW/WXXWXXW consensus motif and the highly conserved pair of arginine residues in thrombospondin type 1 repeat C-mannosylation sites or homologous arginine residues in other domains. Furthermore, we identified a conserved PXP sequence C-terminal of the C-mannosylation site. The PXP motif forms a tight turn region in the polypeptide chain and its universal conservation in C-mannosylated protein is worthy of further experimental study. The stabilization of C-mannopyranosyl groups was demonstrated through hydrogen bonding with arginine and other charged or polar amino acids. Where possible, the structural findings were linked to other functional studies demonstrating the role of C-mannosylation in protein stability, secretion or function. With the current technological advances in structural biology, we hope to see more progress in the study of C-mannosylation that may correspond to discoveries of novel C-mannosylation pathways and functions with implications for human health and biotechnology.
Collapse
Affiliation(s)
- Samuel L Crine
- Department of Biology and Biochemistry, University of Bath, UK
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
4
|
Cooper HJ, Leney AC. Structural proteomics and protein complexes - special issue. Proteomics 2021; 21:e2000286. [PMID: 34779105 DOI: 10.1002/pmic.202000286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Aneika C Leney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|