1
|
Okyem S, Sweedler JV. Recent Advancements in the Characterization of D-Amino Acid and Isoaspartate Post-Translational Modifications. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39558451 DOI: 10.1002/mas.21916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
One of the great triumphs of mass spectrometry-based peptide and protein characterization is the characterization of their modifications as most modifications have a characteristic mass shift. What happens when the modification does not change the mass of the peptide? Here, the characterization of several peptide and proteins modifications that do not involve a mass shift are highlighted. Protein and peptide synthesis on ribosomes involves L-amino acids; however, posttranslational modifications (PTMs) can convert these L-amino acids into their D-isomers. As another example, nonenzymatic PTM of aspartate leads to the formation of three different isomers, with isoaspartate being the most prevalent. Both modifications do not alter the mass of the peptide and yet can have profound impact on the physicochemical characteristics of the peptide. Several MS and ion mobility techniques are highlighted, as are other methods such as chromatography, enzymatic enrichment, and labeling. The challenges inherent to these analytical methods and prospective developments in bioinformatics and computational strategies are discussed for these zero-dalton PTMs.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Dens C, Adams C, Laukens K, Bittremieux W. Machine Learning Strategies to Tackle Data Challenges in Mass Spectrometry-Based Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2143-2155. [PMID: 39074335 DOI: 10.1021/jasms.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
In computational proteomics, machine learning (ML) has emerged as a vital tool for enhancing data analysis. Despite significant advancements, the diversity of ML model architectures and the complexity of proteomics data present substantial challenges in the effective development and evaluation of these tools. Here, we highlight the necessity for high-quality, comprehensive data sets to train ML models and advocate for the standardization of data to support robust model development. We emphasize the instrumental role of key data sets like ProteomeTools and MassIVE-KB in advancing ML applications in proteomics and discuss the implications of data set size on model performance, highlighting that larger data sets typically yield more accurate models. To address data scarcity, we explore algorithmic strategies such as self-supervised pretraining and multitask learning. Ultimately, we hope that this discussion can serve as a call to action for the proteomics community to collaborate on data standardization and collection efforts, which are crucial for the sustainable advancement and refinement of ML methodologies in the field.
Collapse
Affiliation(s)
- Ceder Dens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
| | - Charlotte Adams
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
| | - Wout Bittremieux
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
| |
Collapse
|
3
|
Flender D, Vilenne F, Adams C, Boonen K, Valkenborg D, Baggerman G. Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39152539 DOI: 10.1002/mas.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Immunopeptidomics is becoming an increasingly important field of study. The capability to identify immunopeptides with pivotal roles in the human immune system is essential to shift the current curative medicine towards personalized medicine. Throughout the years, the field has matured, giving insight into the current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun proteomics workflows is malpractice because immunopeptidomics faces numerous challenges. While many of these difficulties have been addressed, the road towards the ideal workflow remains complicated. Although the presence of Posttranslational modifications (PTMs) in the immunopeptidome has been demonstrated, their identification remains highly challenging despite their significance for immunotherapies. The large number of unpredictable modifications in the immunopeptidome plays a pivotal role in the functionality and these challenges. This review provides a comprehensive overview of the current advancements in immunopeptidomics. We delve into the challenges associated with identifying PTMs within the immunopeptidome, aiming to address the current state of the field.
Collapse
Affiliation(s)
- Daniel Flender
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- Health Unit, VITO, Mol, Belgium
| | - Frédérique Vilenne
- Health Unit, VITO, Mol, Belgium
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- ImmuneSpec, Niel, Belgium
| | - Dirk Valkenborg
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Geert Baggerman
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
- ImmuneSpec, Niel, Belgium
| |
Collapse
|
4
|
Lautenbacher L, Yang KL, Kockmann T, Panse C, Chambers M, Kahl E, Yu F, Gabriel W, Bold D, Schmidt T, Li K, MacLean B, Nesvizhskii AI, Wilhelm M. Koina: Democratizing machine learning for proteomics research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596953. [PMID: 38895358 PMCID: PMC11185529 DOI: 10.1101/2024.06.01.596953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Recent developments in machine-learning (ML) and deep-learning (DL) have immense potential for applications in proteomics, such as generating spectral libraries, improving peptide identification, and optimizing targeted acquisition modes. Although new ML/DL models for various applications and peptide properties are frequently published, the rate at which these models are adopted by the community is slow, which is mostly due to technical challenges. We believe that, for the community to make better use of state-of-the-art models, more attention should be spent on making models easy to use and accessible by the community. To facilitate this, we developed Koina, an open-source containerized, decentralized and online-accessible high-performance prediction service that enables ML/DL model usage in any pipeline. Using the widely used FragPipe computational platform as example, we show how Koina can be easily integrated with existing proteomics software tools and how these integrations improve data analysis.
Collapse
Affiliation(s)
- Ludwig Lautenbacher
- Computational Mass Spectrometry, Technical University of Munich (TUM), Freising, Germany
| | - Kevin L. Yang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tobias Kockmann
- Functional Genomics Center Zurich (FGCZ) - University of Zurich | ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Christian Panse
- Functional Genomics Center Zurich (FGCZ) - University of Zurich | ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Quartier Sorge - Batiment Amphipole, CH-1015 Lausanne, Switzerland
| | - Matthew Chambers
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Elias Kahl
- Computational Mass Spectrometry, Technical University of Munich (TUM), Freising, Germany
| | - Fengchao Yu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Wassim Gabriel
- Computational Mass Spectrometry, Technical University of Munich (TUM), Freising, Germany
| | - Dulguun Bold
- Computational Mass Spectrometry, Technical University of Munich (TUM), Freising, Germany
| | | | - Kai Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Brendan MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Alexey I. Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mathias Wilhelm
- Computational Mass Spectrometry, Technical University of Munich (TUM), Freising, Germany
- Munich Data Science Institute, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
5
|
Adams C, Gabriel W, Laukens K, Picciani M, Wilhelm M, Bittremieux W, Boonen K. Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF. Nat Commun 2024; 15:3956. [PMID: 38730277 PMCID: PMC11087512 DOI: 10.1038/s41467-024-48322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Immunopeptidomics is crucial for immunotherapy and vaccine development. Because the generation of immunopeptides from their parent proteins does not adhere to clear-cut rules, rather than being able to use known digestion patterns, every possible protein subsequence within human leukocyte antigen (HLA) class-specific length restrictions needs to be considered during sequence database searching. This leads to an inflation of the search space and results in lower spectrum annotation rates. Peptide-spectrum match (PSM) rescoring is a powerful enhancement of standard searching that boosts the spectrum annotation performance. We analyze 302,105 unique synthesized non-tryptic peptides from the ProteomeTools project on a timsTOF-Pro to generate a ground-truth dataset containing 93,227 MS/MS spectra of 74,847 unique peptides, that is used to fine-tune the deep learning-based fragment ion intensity prediction model Prosit. We demonstrate up to 3-fold improvement in the identification of immunopeptides, as well as increased detection of immunopeptides from low input samples.
Collapse
Affiliation(s)
- Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Wassim Gabriel
- Computational Mass Spectrometry, Technical University of Munich, 85354, Freising, Germany
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Mario Picciani
- Computational Mass Spectrometry, Technical University of Munich, 85354, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, Technical University of Munich, 85354, Freising, Germany
- Munich Data Science Institute, Technical University of Munich, 85748, Garching, Germany
| | - Wout Bittremieux
- Department of Computer Science, University of Antwerp, Antwerp, Belgium.
| | - Kurt Boonen
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Sustainable Health Department, Flemish Institute for Technological Research (VITO), Antwerp, Belgium.
| |
Collapse
|
6
|
Bittremieux W. From data to discovery: The essential role of computational tools in proteomics. Proteomics 2024; 24:e2300081. [PMID: 38629976 DOI: 10.1002/pmic.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Wout Bittremieux
- Department of Computer Science, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|